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Abstract

Castro, Bruno; Lopes, Hélio (Advisor); Poggi, Marcus (Co-
Advisor); Martinelli, Rafeal (Co-Advisor). Improved Hybrid Ge-
netic Search for the Inventory Routing Problem. Rio de
Janeiro, 2023. 126p. Dissertação de Mestrado – Departamento de
Informática, Pontifícia Universidade Católica do Rio de Janeiro.

Theme: This study investigates the Inventory Routing Problem (IRP)
within the context of Vendor-Managed Inventory (VMI), a prevalent supply
chain practice where suppliers assume responsibility for replenishment. The
IRP, a combinatorial problem that has been widely studied for almost 40 years,
encompasses three distinct subproblems: delivery scheduling, inventory man-
agement, and vehicle routing. Problem: Despite its age, the IRP continues
to attract industry and academia attention. The recent 12th DIMACS Imple-
mentation Challenge dedicated a track to the IRP, and among the commonly
used benchmarks, 401 instances still lack optimal solutions, particularly in the
challenging Large instance subset. Hypothesis and Justification: The HGS
framework proposed by Vidal et al. (2012) emerged as a prominent tool used
successfully by numerous teams in the competition. However, to the best of our
knowledge, the HGS framework has not been tested for the IRP. This study
proposes a method combining the HGS framework with an efficient local search
strategy, namely NSIRP proposed by Diniz et al. (2020), to tackle the IRP.
Methodology: We implemented the proposed method and compared its per-
formance to 21 existing methods using the literature benchmarks. Summary
of Results: Our approach identified 79 new Best Known Solutions (BKS) out
of 1100 instances. If applied under the same rules as the DIMACS competition,
our method would have secured the first place. Contributions and Impacts:
This work contribute to the ongoing development of IRP methods, offering an
efficient and competitive approach that may inspire further research and prac-
tical applications in the realm of inventory management and vehicle routing.

Keywords
Inventory Routing Problem; Hybrid Genetic Search; Metaheuristics;

Vendor Managed Inventory.



Resumo

Castro, Bruno; Lopes, Hélio; Poggi, Marcus; Martinelli, Rafeal.
Melhoria de Busca Genética Híbrida para o Problema
de Roteamento de Inventário. Rio de Janeiro, 2023. 126p.
Dissertação de Mestrado – Departamento de Informática, Pontifícia
Universidade Católica do Rio de Janeiro.

Tema: Este estudo investiga o Problema de Roteamento de Inventário
(IRP) no contexto do Gerenciamento de Inventário pelo Fornecedor (VMI),
uma prática comum na cadeia de suprimentos onde os fornecedores assumem a
responsabilidade pela reposição. O IRP, um problema combinatório estudado
amplamente há quase 40 anos, engloba três subproblemas distintos: progra-
mação de entregas, gerenciamento de estoque e roteamento de veículos. Prob-
lema: Apesar de sua idade, o IRP continua a atrair a atenção da indústria e
da academia. O recente 12o Desafio de Implementação DIMACS dedicou uma
categoria ao IRP, e entre os benchmarks comumente utilizados, 401 instâncias
ainda não possuem soluções ótimas, especialmente no desafiador subconjunto
de instâncias grandes. Hipótese e Justificativa: O framework HGS proposto
por Vidal et al. (2012) surgiu como uma ferramenta proeminente utilizada por
várias equipes de forma satisfatória na competição. No entanto, até onde sabe-
mos, o framework HGS não foi testada para o IRP. Este estudo propõe uma
solução que combina o framework HGS com uma estratégia de busca local efi-
ciente, o método NSIRP proposto por Diniz et al. (2020), para abordar o IRP.
Metodologia: Implementamos a solução proposta e comparamos seu desem-
penho com 21 abordagens existentes, utilizando os benchmarks da literatura.
Resumo dos Resultados: Nossa abordagem identificou 79 novas Melhores
Soluções Conhecidas (BKS) dentre 1100 instâncias. Se aplicada sob as mesmas
regras da competição DIMACS, nossa solução teria garantido o primeiro lugar.
Contribuições e Impactos: Este trabalho contribui para o desenvolvimento
contínuo de soluções para o IRP, oferecendo uma abordagem eficiente e com-
petitiva que pode inspirar futuras pesquisas e aplicações práticas no campo do
gerenciamento de estoque e roteamento de veículos.

Palavras-chave
Problema de Roteamento de Inventário; Busca Genética Híbrida; Meta-

heuristics; Gerenciamento de Inventário pelo Fornecedor.
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1
Introduction

The Inventory Routing Problem (IRP) is a well-known combinatorial problem
in the literature that combines three distinct challenges: delivery scheduling,
inventory management, and vehicle routing. This problem often arises in the
context of Vender-Managed Inventory (VMI), a prevalent business practice
in supply chain management where the supplier assumes responsibility for
replenishing a customer’s inventory based on their supply chain policies.

To successfully manage VMI, the supplier must make three critical
decisions: (1) when to serve their clients, (2) the appropriate quantity of
products to deliver, and (3) the optimal routing strategy for their vehicles.
These decisions are highly interdependent and must take into account a range
of complex factors, such as transportation costs, inventory carrying costs,
customer consumption, and vehicle capacity.

By integrating inventory management and routing decisions, companies
can reduce their overall costs associated with inventory holding, transporta-
tion, and production. This results in increased operational efficiency and prof-
itability. The IRP is particularly relevant in industries such as food and bev-
erage, retail, and transportation, where the management of inventory and lo-
gistics plays a crucial role in achieving customer satisfaction and minimizing
operational costs.

Despite the age of the IRP, it continues to attract attention from
both industry and academia. In the recent 12th DIMACS Implementation
Challenge (DIMACS, 2022) a track was dedicated to the IRP, and among
the commonly used benchmarks, 401 instances still lack optimal solutions,
particularly in the challenging Large instance subset. Developing effective
methods to the IRP will not only contribute to the academic literature but
also provide valuable tools for practitioners in various industries, ultimately
improving supply chain performance and customer satisfaction.

In recent years, various methods have been proposed to address the IRP,
with two particular approaches capturing our interest. The first method is
the Network Simplex IRP (NSIRP), proposed by Diniz et al. (2020). NSIRP
is specifically tailored for the IRP and boasts a highly effective local search
strategy. The second approach is the Hybrid Genetic Search (HGS), introduced
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by Vidal et al. (2012), which has gained significant prominence in the context of
the Vehicle Routing Problem (VRP). Notably, the open-source implementation
by Vidal (2022) has played a key role in numerous successful algorithms
during the 12th DIMACS Implementation Challenge. While HGS has not been
originally developed for the IRP, it has shown great potential for adaptation
to this problem domain, given its success in the broader VRP field.

Given the previous state, we formulate the following research question:
Can the combination of the HGS framework and the NSIRP local search
strategy yield an effective method for the Inventory Routing Problem?

We hypothesize that the combination of the HGS framework and the
NSIRP local search strategy will result in a competitive and effective method
for the IRP. This hypothesis is based on the previous success of the HGS
framework in the competition and the potential synergy between the HGS
framework and the NSIRP local search strategy.

We implemented the proposed method to address the research question
and compared its performance to 21 existing methods using the literature
benchmarks.

The main contributions expected from this study are developing an
effective and competitive method for the IRP and identifying new Best Known
Solution (BKS) for the literature benchmark using the proposed method.

In order to achieve the research objective, the following specific objectives
have been established:

– Develop a new implementation that combines the HGS framework with
the NSIRP local search strategy for the IRP.

– Evaluate the performance of the proposed method using benchmark
problem instances from the literature.

– Compare the performance of the proposed method to existing methods
in terms of method quality and computational efficiency.

– Contribute to the ongoing development of IRP methods and inspire
further research in the field of inventory management and vehicle routing.

Numerous studies have been conducted in the last decade, addressing a wide
variety of IRPs and their applications. These IRPs differ mainly in terms of
the time horizon (finite or infinite), the structure of the distribution network
(one-to-one, one-to-many, many-to-many), inventory replenishment policy (the
two most common are the ML and OU), fleet size (single, multi-vehicle, or
unconstrained), fleet composition (homogeneous or heterogeneous vehicles),
and information on customer consumption (deterministic or stochastic).
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This work focuses on the basic variant, as defined in Coelho et al. (2014),
where a single supplier distributes a single product over a finite time horizon,
using a fleet of homogeneous vehicles to serve clients with deterministic
consumption. This scope delimitation was chosen based on numerous published
papers and the possibility of comparison using a popular set of benchmark
problem instances.

The remainder of this document is organized as follows:
Chapter 2: Literature Review - This chapter presents the problem

statement, the exact and approximate methods used to solve the IRP, and the
current solution status of the most widely used literature benchmark instances.

Chapter 3: Background - This chapter provides an overview of the
two methods that inspired this work: the NSIRP and the HGS framework. It
discusses their respective approaches and the reasons for their selection in the
development of the proposed method.

Chapter 4: Proposed Methodology - This chapter outlines the
main ideas of this work, describing how the integration of the NSIRP and
HGS methods was made possible, and discussing three new improvements
introduced to enhance their performance in solving the IRP.

Chapter 5: Computational Experiments and Analysis - This
chapter describes the experiments conducted to evaluate the proposed method,
detailing the classical benchmark instances used, the experimental setup, and
the performance measures adopted to assess the effectiveness and efficiency of
the proposed method.

Chapter 6: Conclusions - This final chapter revisits the main contri-
butions of this work, summarizing the findings and the impact of the proposed
method on the IRP literature. It also suggests possible future directions for
further research and improvements in the field of inventory management and
vehicle routing.



2
Literature review

The IRP has received significant attention in the operations research and
logistics literature due to its practical relevance and inherent difficulty. This
chapter provides a comprehensive review of the existing literature on the
IRP, highlighting the most relevant and recent contributions regarding exact
and approximate methods, surveys, and the classical benchmark instances in
together with its current performance state.

The chapter is organized as follows:

– Section 2.1: This section introduces the IRP, its history, main variations,
and basic variant.

– Section 2.2: We present a comprehensive review of the literature methods
for resolving the IRP. This section will specifically examine both exact
and approximate approaches, providing a thorough understanding of the
methods used to address this problem.

– Section 2.3: In this section, we provide an overview of the surveys on
the IRP, focusing on their different perspectives, such as applications,
characteristics, modeling approaches, and methodological aspects.

– Section 2.4: This section describes the widely used benchmark instances
for the IRP, including those proposed by Archetti et al. (2007) and
Archetti et al. (2012). It also discusses the extension of these instances
to the multi-vehicle IRP by Coelho et al. (2012a). The section provides
a detailed breakdown of the instances in terms of the number of clients,
vehicles, inventory cost types, and periods.

– Section 2.5: Lastly, we outline the current state of the classical benchmark
instances, highlighting solved and open instances, as well as the overall
performance of the methods in terms of optimality and Duality Gap.
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2.1
Problem statement

The IRP is a complex optimization problem that integrates inventory man-
agement, vehicle routing, and delivery scheduling decisions. It originated from
the seminal paper by Bell et al. (1983) in the context of Vender-Managed In-
ventory (VMI), which aims to reduce logistics costs and add business value
by having suppliers manage product replenishment for customers based on
specific inventory and supply chain policies. Early studies on the IRP, such as
those by Federgruen and Zipkin (1984), Blumenfeld et al. (1985), and Dror and
Ball (1987), adapted Vehicle Routing Problem (VRP) models and heuristics to
consider inventory costs, production setup costs, and stochastic consumption
environments.

However, these initial contributions faced challenges in integrating dis-
tribution and inventory problems due to limited computing power and the
difficulty of handling large combinatorial problems.

2.1.1
Main variations

Coelho et al. (2014) classifies the IRPs according to its structural variants
and the availability of consumption information. Structural criteria include
time horizon, structure, routing, inventory policy, inventory decisions, fleet
composition, and fleet size. The time horizon can be finite or infinite, while the
structure varies from one-to-one, one-to-many, or many-to-many, depending
on the number of suppliers and customers. Routing can be direct, multiple, or
continuous. Inventory policies include Maximum-Level (ML) and Order-Up-
to-Level (OU) policies. Inventory decisions involve back-ordering, lost sales,
or nonnegative. Fleet composition can be homogeneous or heterogeneous, and
fleet size can be fixed (single or multi-vehicle) or unconstrained. The second
classification, availability of consumption information, covers deterministic,
stochastic (SIRP), dynamic, and dynamic and stochastic inventory-routing
problems (DSIRP). This classification scheme separates problem structure
from information availability, allowing for clearer distinctions between models
and algorithms.

2.1.2
The basic variant

The basic variant of the IRP, as described by Coelho et al. (2014), considers a
one-to-many structure, where there is a single supplier denoted as 0, and a set
of customers represented by N = {n is integer | 1 ≤ n ≤ N}. The planning
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horizon is finite, defined by the set of time periods T = {t is integer | 1 ≤ t ≤
T}, and a set of vehicles is given by K = {k is integer | 1 ≤ k ≤ K}.

Consumption is assumed to be deterministic, with the supplier producing
a specified quantity of product dt

0 at each time period t, and each customer n

consuming dt
n. The vehicles are assumed to be homogeneous with a specified

capacity Q, and each customer should be visited by no more than one vehicle
per period.

The initial inventory level for the supplier is denoted as I0
0 , and for each

customer n, it is I0
n. The inventory level for a customer n in a period t is given

by I t
n = I t−1

n + qt
n− dt

n, where qt
n denotes the quantity delivered to customer n

at period t.
The total quantity of products that a vehicle k can carry must not exceed

Q, and the inventory levels I t
n for each customer n in each period t must remain

within the bounds of Ln and Un − dt
n.

The Figure 2.1 depicts the sequence of events. The quantity delivered qt
n

to customer n at period t occur prior to the customer’s consumption dt
n.

This imposes that I t−1
n + qt

n ≤ Un. In other words, the sum of the
last period’s remaining inventory and the current delivery cannot exceed the
customer’s maximum storage capacity.

Figure 2.1: Sequence of events for a client n in IRP. The delivery must occur
prior to the customer’s consumption

The IRP is subject to two types of costs: inventory and transportation
costs. The supplier incurs an inventory cost per product unit defined by h0,
while customers incur a cost of hn. The transportation cost is given by cij,
where i and j denote customers or the supplier.

The decision-maker has knowledge of the current inventory levels of the
supplier and customers, as well as the consumption of each customer for every
time period. The objective is to minimize the total inventory distribution cost
while satisfying constraints such as maximum inventory capacity, non-negative
inventory levels, vehicle routing, and vehicle capacities.
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The basic variant of the IRP is considered NP-hard since it includes
the classical VRP. However, effective algorithms have been proposed for this
problem, such as Mixed Integer Linear Programming (MILP) models and
heuristic algorithms, including simulated annealing, and tabu search. These
approaches provide solutions to the basic IRP and its variants and have
contributed significantly to the development of practical inventory routing
systems.

2.2
Literature methods

The purpose of this section is to provide a comprehensive overview of the
literature methods used to solve the IRP. The section will cover the following
topics:

– Subsection 2.2.1: This section presents an overview of the exact methods
for solving the IRP, including the single-vehicle and multi-vehicle cases.

– Subsection 2.2.2: Here, we discuss the approximate methods for the IRP,
emphasizing the motivation for using approximates in larger instances,
where exact methods may not provide optimal solutions within a rea-
sonable time frame. The section covers single-vehicle algorithms, multi-
vehicle algorithms, and recent innovative algorithms that have gained
attention in the literature.

2.2.1
Exact methods

This section presents the literature on exact methods for solving the IRP.
Archetti et al. (2007) were the first to propose a Branch and Cut (B&C)

approach for the single-vehicle IRP. They introduced the first set of valid in-
equalities and demonstrated the advantages of using the ML inventory policy
over the OU policy. Ǒguz Solyali and Süral (2011) later improved upon this
work with a stronger formulation employing shortest-path networks represent-
ing customer replenishments and a heuristic to provide an initial upper bound
for the B&C approach. Furthermore, Avella et al. (2015) suggested a novel
two-index vehicle-flow formulation, applicable when the inventory capacity at
each customer is an integer multiple of consumption.

For the multi-vehicle IRP, Coelho and Laporte (2013) adapted the valid
inequalities introduced by Archetti et al. (2007). Subsequently, Coelho and
Laporte (2014) proposed a three-index formulation and new valid inequalities
to bound the minimum number of visits per customer over consecutive periods
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of the horizon. Adulyasak et al. (2014) presented a two-index arc-flow formula-
tion, adding capacitated sub-tour elimination constraints dynamically. Avella
et al. (2018) adapted the work of Avella et al. (2015) for the multi-vehicle case
and introduced a new family of generic valid inequalities. Guimarães et al.
(2020) suggested new mechanisms for enhancing IRP solution feasibility that
can be incorporated into exact methods and heuristics, employing two tech-
niques to find primal solutions during the B&C search.

Four recent studies have gained prominence in the field. Two of these
works focus on two-index vehicle-flow formulations. In one, Manousakis et al.
(2021) expands the formulations to accommodate a two-commodity flow,
whereas Skålnes et al. (2022) employs a customer schedule reformulation and
modifies the capacity inequalities put forth by Desaulniers et al. (2016). In
another notable study, Schenekemberg et al. (2023) utilizes the two-index
B&C approach, complemented by a three-index B&C and a matheuristic
method that runs parallelly and shares information and stopping criteria.
Lastly, Skålnes et al. (2023b) achieves significant results with a branch-and-cut
embedded metaheuristic framework, which fuses a construction heuristic with
an improvement heuristic to generate and optimize routes, thereby surpassing
previously established methods for tackling the problem.

Distinct among the exact methods for the IRP is the Branch Price and
Cut (BP&C) algorithm proposed by Desaulniers et al. (2016). The authors
introduced a column generation algorithm embedded within a B&C approach,
achieving better lower and upper bounds for more complex instances.

Table 2.1 summarizes the exact methods discussed above, listing them
chronologically from the earliest to the most recent publications. The table
provides information on the reference, year of publication, and approach used
for solving the IRP.

2.2.2
Approximate methods

This subsection presents the literature on approximate methods for solving the
IRP.

None of the exact methods described in Section 2.2.1 have been able to
solve larger multi-vehicle instances to optimality. As instance size increases,
the Duality Gap can become very large, often resulting in no feasible solution
found within a reasonable time frame when using an exact method.

Archetti et al. (2012) proposed the first approximate method for the
classical IRP and introduced a large set of widely used benchmark instances.
Their Tabu search algorithm features an improvement phase that solves MILP
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Table 2.1: Summary of exact methods for solving the IRP in the literature
Refference Year Approach

Archetti et al. (2007) 2007 B&C
Ǒguz Solyali and Süral (2011) 2011 B&C
Coelho and Laporte (2013) 2014 B&C
Adulyasak et al. (2014) 2014 B&C
Coelho and Laporte (2014) 2014 B&C
Avella et al. (2015) 2015 B&C
Desaulniers et al. (2016) 2016 BP&C
Avella et al. (2018) 2018 B&C
Guimarães et al. (2020) 2020 B&C
Manousakis et al. (2021) 2021 B&C
Skålnes et al. (2022) 2022 B&C
Schenekemberg et al. (2023) 2022 B&C
Skålnes et al. (2023b) 2023 B&C

problems. The algorithm starts from a feasible solution and explores the
neighborhood of the current solution while performing occasional jumps to
new regions of the search space. Two Adaptative Large Neighborhood Search
(ALNS) methods followed: Coelho et al. (2012b) for a single vehicle, and its
extended version Coelho et al. (2012a), which introduced the multi-vehicle case
for the benchmark set.

After Coelho et al. (2012a), new approximate methods for multi-vehicle
instances emerged. Adulyasak et al. (2014) also proposed an ALNS method,
while Santos et al. (2016) suggested an Iterated Local Search (ILS) with a
hybrid multi-start. Archetti et al. (2017) extended their previous work Archetti
et al. (2012) for the multi-vehicle case. In Alvarez et al. (2018), two heuristics
were proposed: a Simulated Annealing (SA) and an ILS. Chitsaz et al. (2019)
proposed a three-phase decomposition. Alvarez et al. (2020) suggested a hybrid
heuristic using ILS and MILPs for perishable products that could be adapted
to the IRP.

More recently, several works have gained attention. Diniz et al. (2020)
proposed an effective local search based on a modification of the network
simplex, which will be discussed in Chapter 3. Archetti et al. (2021) suggested
a kernel search that uses information gathered by a Tabu search to create
a sequence of MILPs. Vadseth et al. (2021) developed a method where
the initial route set is created from a giant tour using a split algorithm,
and then iteratively solves a route-based MILP, altering the set of routes
between each iteration. Solyalı and Süral (2022) introduced an algorithm that
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sequentially solves different mixed integer linear programs. Achamrah et al.
(2022) presented a two-phase matheuristic, combining MILP and hybridizing
Genetic Algorithm (GA) and SA. Lastly, Vadseth et al. (2023) described
an algorithm that constructs a feasible starting solution using a traditional
decomposition approach and improves it with a path-flow-inspired model.

Table 2.2 outlines the approximate methods described previously. The
methods are listed chronologically, from the earliest to the most recent publi-
cations. The table provides information on the reference, year of publication,
and approach used for solving the IRP.

Table 2.2: Summary of approximate methods for solving the IRP in the
literature

Reference Year Approach

Archetti et al. (2012) 2012 TABU + MILP
Coelho et al. (2012b) 2012 ALNS
Coelho et al. (2012a) 2012 ALNS
Adulyasak et al. (2014) 2014 ALNS
Santos et al. (2016) 2016 ILS-RVND
Archetti et al. (2017) 2017 TABU + MILP
Alvarez et al. (2018) 2018 SA
Alvarez et al. (2018) 2018 ILS
Chitsaz et al. (2019) 2019 DECOMPOSITION
Alvarez et al. (2020) 2020 ILS + MILP
Diniz et al. (2020) 2020 ILS-RVND + NS
Archetti et al. (2021) 2021 KERNEL
Vadseth et al. (2021) 2021 DECOMPOSITION
Sakhri et al. (2022) 2021 GA + VNS
Solyalı and Süral (2022) 2022 DECOMPOSITION
Achamrah et al. (2022) 2022 GA+SA+MILP
Vadseth et al. (2023) 2023 DECOMPOSITION

2.3
Surveys

Several surveys have been written on the IRP scope. Andersson et al. (2010)
focused on different applications of the IRP. Bertazzi and Speranza (2012) and
Bertazzi and Speranza (2013) classify the characteristics of an IRP and present
different models and policies for the IRP. Coelho et al. (2014) studied the
methodological aspects. More recently, Roldán et al. (2017) studies stochastic
versions.
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2.4
Classical benchmark instances

The instances proposed by Archetti et al. (2007) are among the most widely
used in the literature and consist of 160 instances in total. These instances
have different numbers of customers, ranging from 5 to 50, and two different
types of inventory costs (low and high). There are also two time horizons: a
three-period and a six-period horizon. The latter is only available for instances
with the number of customers from 5 to 30.

Later, Archetti et al. (2012) proposed 60 new instances with the number
of customers of 50, 100, and 200, and a planning horizon of six-time periods.
These instances are collectively referred to as the Large set, while the instances
from Archetti et al. (2007) are referred to as the Small set.

In 2012, Coelho et al. (2012a) extended the instances to a multi-vehicle
IRP by dividing the original vehicle capacity by the number of vehicles and
rounding to the nearest integer. This resulted in 640 small instances and 240
large instances for vehicles ranging from two to five.

Tables 2.3 and 2.4 summarize the different IRP instances used in the
literature. Table 2.3 gives an overview of the total number of single-vehicle
and multi-vehicle instances, separated into Small and Large categories, while
Table 2.4 provides a detailed breakdown of the instances from the three main
works, including the number of clients, vehicles, inventory cost type, and the
number of periods. There are a total of 1100 instances, with 220 single-vehicle
instances and 880 multi-vehicle instances.

Table 2.3: Overview of IRP instances in the classical benchmark, categorized
by size and vehicle count

Single-Vehicle Multi-Vehicle Total
Small 160 640 800
Large 60 240 300
Total 220 880 1100

2.5
Literature methods on classical benchmark instances

In this section, we demonstrate the current state of classical benchmark
instances by using the literature methods previously discussed. Given the 29
total studies, we excluded 8 from our analysis because they did not provide
detailed results for each instance. The 21 remaining methods used to calculate
the current state can be seen on Table 2.5.
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Table 2.5: Summary of 21 literature methods used to calculate the current
state of the IRP classical benchmark instances

Reference Type

Archetti et al. (2012) Approximate
Coelho and Laporte (2013) Exact
Coelho and Laporte (2014) Exact
Adulyasak et al. (2014) Exact
Desaulniers et al. (2016) Exact
Archetti et al. (2017) Approximate
Alvarez et al. (2018) Approximate
Avella et al. (2018) Exact
Chitsaz et al. (2019) Approximate
Alvarez et al. (2020) Approximate
Diniz et al. (2020) Approximate
Guimarães et al. (2020) Exact
Manousakis et al. (2021) Exact
Archetti et al. (2021) Approximate
Vadseth et al. (2021) Approximate
Skålnes et al. (2022) Exact
Solyalı and Süral (2022) Approximate
Achamrah et al. (2022) Approximate
Schenekemberg et al. (2023) Exact
Vadseth et al. (2023) Approximate
Skålnes et al. (2023b) Exact

Table 2.6 comprises the results of the 1100 classical benchmark instances.
However, two of them were found to be unfeasible, leaving us with 1098 feasible
instances.

When we analyzed all the studies and compares the best Upper Bound
(UB) and the best Lower Bound (LB) identified by the exact methods, we
found an odd occurrence - 148 instances showed the LB to be larger than
the UB. This isn’t something that should happen normally, but upon closer
scrutiny, it was revealed that 134 of these had a difference of less than 0.3 cost
units. In these cases, we treated the LB and UB as equal.

There were 14 results with a LB that formed a discrepancy larger than
0.3. These results were left out of this analysis and can be found detailed in
Appendix B.

Of the total 1098 instances, 697 were solved optimally, leaving 401
instances still unresolved. It’s important to mention that none of the larger
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instances involving multiple vehicles were optimally solved. The Duality Gap,
a measure of the difference between the best possible solution, and the actual
best-known solution, is 0.80%. The calculation for this percentage is as follows:

UB − LB

LB

Table 2.6: Performance of literature on IRP classical benchmark instances
categorized by size and vehicle count

Single-Vehicle Multi-Vehicle

Small Large Small Large

Instances 1098 (100%) 160 60 638 240
Optimals 697 (63.48%) 160 23 514 0

Open 401 (36.52%) 0 37 124 240
Avg. Duality Gap 0.80% 0% 0.80% 0.16% 3.03%



3
Background

This chapter provides an overview of the two methods that inspired this
work: Network Simplex IRP (NSIRP) and the Hybrid Genetic Search (HGS)
framework. We start with a brief overview of the NSIRP algorithm, which is
specifically designed for the IRP and features a highly efficient local search
strategy. We present its main components and how they are integrated to
solve the IRP. Next, we introduce the HGS framework, a popular approximate
algorithm for the Vehicle Routing Problem (VRP) that has been successfully
applied in the literature. We describe the main ideas of the HGS framework and
its main components, including its advanced population management. Finally,
we discuss the reasons behind the selection of these two methods and their
potential synergies in solving the IRP.

The chapter is organized as follows:

– Section 3.1: This section presents an overview of the NSIRP algorithm,
discussing its main components and how they are integrated to solve the
IRP.

– Section 3.2: Here, we introduce the HGS framework, discussing its main
components and how they are applied to solve the VRP.

– Section 3.3: Lastly, we discuss the reasons for the selection of these two
methods and their potential synergies in solving the IRP.

3.1
Network Simplex IRP (NSIRP)

The NSIRP algorithm, as proposed in Diniz et al. (2020), is an Iterated Local
Search with Variable Neighborhood Descent with Random Neighborhood (ILS-
RVND) (Subramanian, 2012) specifically designed to efficiently address the
IRP. The work demonstrates significant improvements, achieving better upper
bounds for 113 out of 640 instances in the small multi-vehicle category from
the classical benchmark.

One of the primary strengths of the NSIRP algorithm lies in its highly ef-
fective local search, which significantly diminishes the search space required for
scheduling and routing decisions. Inventory decisions are solved optimally by
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modeling them as a Minimum Cost Flow Problem (MCFP) and subsequently
employing a network simplex method to obtain the solution. Since the network
simplex is an exact method, it can require significant computational resources.
However, the NSIRP algorithm improves the network simplex by introducing
modifications that greatly enhance its efficiency. This results in a performance
improvement of ten times compared to the most advanced network simplex
implementations currently available.

3.1.1
Outline the algorithm

Figure 3.1: NSIRP Outline

The NSIRP algorithm, as illustrated in Figure 3.1, comprises several key
components, including the generation of the initial solution, local search,
perturbation, and acceptance criterion. The following sections provide an
overview of each block in the NSIRP algorithm.
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Initial solution generation: The first step involves creating a prelimi-
nary solution, essentially an empty solution with no clients attended. Although
the NSIRP algorithm does not have a robust constructive heuristic for generat-
ing initial solutions, its local search operators effectively enhance the solution
quality.

Perturbation: Once the initial solution is generated, it enters the
main loop of the Iterated Local Search (ILS) framework, which consists of
perturbation, local search, and acceptance criterion. Perturbations introduce
diversity into the search process and help escape local optima. The NSIRP
employs a simple yet effective perturbation strategy by selecting a random
neighborhood of the current incumbent solution and attempting 15 times to
find an improved or slightly worse solution. The slight deviation is controlled
by a simulated annealing process.

Local search: The incumbent solution then undergoes the local search
step, executed by the Variable Neighborhood Descent with Random Neigh-
borhood (RVND) algorithm. RVND comprises multiple neighborhoods to ef-
fectively explore the search space. It performs a local search on each neigh-
borhood, with the order of neighborhood exploration determined randomly.
Whenever a neighborhood identifies a superior solution, the process restarts.
The algorithm concludes when no improvements are found across all neighbor-
hoods.

Acceptance criterion: The final component of the ILS framework is the
acceptance criterion, which determines if a newly generated candidate solution
should replace the incumbent solution. In the NSIRP, the initial acceptance
criterion allows for a 20% probability of accepting solutions that are 20% worse.
As the algorithm progresses, the acceptance criterion becomes more stringent;
after 500 iterations of the ILS, the probability of accepting solutions 1% worse
decreases to 1%.

3.1.2
Local search neighborhoods

The IRP involves three types of decisions: scheduling, routing, and inventory.
The large neighborhoods resulting from these variable decisions can be reduced
by using an indirect representation of the solution. This approach explores
smaller neighborhoods, and each solution is mapped to a complete solution
through a decoder.

The NSIRP uses scheduling and routing as the solution representation.
During the local search, for each solution representation, the algorithm de-
termines the optimal inventory by modeling it as a MCFP. This process is
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illustrated on Figure 3.2.

Figure 3.2: Example the use of the MCFP as a decoder to map an incomplete
IRP solution based on two decision variables, Scheduling, and Routing to a
complete solution with the Delivery decision variables

The NSIRP incorporates a total of six neighborhoods: Insert, Remove, Relo-
cate, Swap, Shift, and 2-Opt.

Insert and Remove neighborhoods have similar sizes, both with a com-
plexity of O(T ∗ K ∗ N). The Insert operation adds a client n in a period t

using a vehicle k. In contrast, the Remove operation eliminates the client n

from the period t and vehicle k. Figure 3.3 and Figure 3.4 exemplifies both
neighborhoods.

Figure 3.3: Example of Insert movement. Client 3 is inserted in Vehicle 1 from
Period 2.

Relocate and Swap neighborhoods also exhibit similar sizes, both with a
complexity of O(T 2 ∗K2 ∗N2). The Relocate operation selects a client n from
period t1 using vehicle k1 and moves it to period t2 in route k2. This operation
can be viewed as a combination of Remove and Insert operations. Similarly,
the Swap operation functions like Relocate but also reassigns the customer
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Figure 3.4: Example of Remove movement. Client 3 is removed from Vehicle 2
from Period 3.

from t2 and route k2 back to t1 using vehicle k1. Figure 3.5 and Figure 3.6
exemplifies both neighborhoods.

Figure 3.5: Example of Relocate movement. Client 4 is removed from Route 1
from Period 1 and inserted in Vehicle 2 from Period 3.

Figure 3.6: Example Swap movement. Client 4 is removed from Route 1 from
Period 1, and swapped with Client 3 from Route 2 in Period 3.

Shift and 2-Opt neighborhoods share a common characteristic: both
involve intra-route movements, which means that the inventory solution for the
neighboring solution remains unchanged. The Shift operation has a complexity
of O(T ∗K ∗N). It selects a client n from period t using vehicle k and moves it
one position forward. The 2-Opt operation has a complexity of O(T ∗K ∗N2).
It selects clients n1 and n2 from period t using vehicle k and reverses the
sub-tour between them. Figures 3.7 and 3.8 exemplify these neighborhoods.
Overall, these neighborhoods enable the NSIRP algorithm to explore various
solution spaces effectively. By employing a combination of intra-route and
inter-route movements, the local search process is capable of finding high-
quality solutions while maintaining efficiency. The indirect representation of
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Figure 3.7: Example of Shift movement. Client 2 in Vehicle 1 was shift and the
route changed from 1− 2− 4 to 1− 4− 2.

Figure 3.8: Example of 2-Opt movement. The route was changed from 1− 2−
5− 4 to 1− 2− 4− 5.

the solution further contributes to the algorithm’s effectiveness by reducing
the search space size and allowing the decoder to map partial solutions to
complete ones.

3.1.3
Modeling with Minimum Cost Flow Problem (MCFP)

Based on Orlin’s (1983) ideas, the NSIRP algorithm models the inventory
decisions as a MCFP, which allows it to efficiently find its optimal inventory
for a given routing and scheduling solution. The proposed network flow model
consists of the following components, as illustrated in Figure 3.9:

Supplier Nodes: A node st is created for every period t ∈ T . Each
supplier node represents the production of dt

s units of products. To handle the
initial inventory in the supplier, the s1 supplies I0

s + d1
s units of products.

Client Nodes: A node cn,t is created for every client n ∈ N and for
every period t ∈ T . Each client node represents the consumption for dt

n units
of products. To handle the initial inventory in the clients, the cn,1 consumes
d1

n − I0
n units of products.
Vehicle Nodes: A node vk,t is created for every vehicle k ∈ K and for
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every period t ∈ T . Each vehicle node represents a vehicle that is available to
transport products with no consumption for products itself.

Excess Product Node: A single node e is created to represent the
excess of product that may exist at the end of the time horizon. This node has
a consumption equal to the difference between the total supply and the total
consumption.

Arcs for Vehicle Transport: An arc is created from each supplier node
st to each vehicle node vk,t. These arcs have a cost of 0 and a limit equal to
the vehicle’s capacity, Q.

Arcs for Vehicle Routing: An arc is created from each vehicle node
vk,t to each client node cn,t. The cost of these arcs is 0 if the client n is attended
by vehicle k; otherwise, the cost is infinite. The limit of these arcs is equal to
Q.

Arcs for Client Inventory: An arc is created from each client node
cn,t to the corresponding client node in the next period, cn,t+1. These arcs have
a cost of hn and a limit of Un − dt

n. This limit guarantees that the delivery
occurs prior to the consumption as seen on Figure 2.1.

Arcs for Excess Product: An arc is created from each client node at
the last period cn,T to the excess product node e. These arcs have a cost of 0
and an unlimited limit.

By modeling the IRP’s inventory decision as an MCFP using these
components, the NSIRP can efficiently find the optimal inventory for a given
routing and scheduling solution, reducing the size of the search space and
enabling better exploration of the solution space.

3.1.4
Fast Flow Network Simplex (FFNS)

The Coelho et al. (2012a) also tried the inventory decision decomposition as a
MCFP, but they reported that approximately 65% of the total time was spent
solving only this subproblem. The Diniz et al.’s (2020) work focused on how
to speed up the resolution of the MCFP.

The NSIRP continues to employ the network simplex as the exact method
for tackling the MCFP. Notably, it introduces a novel enhancement within its
implementation that skillfully obviates the necessity of reinitiating the entire
algorithm each time a new execution is carried out.. Termed the Fast Flow
Network Simplex (FFNS), this enhancement has demonstrated an exceptional
speedup, being found to be 10 times faster.

The network simplex method is a version of the simplex method tailored
for Network Flow problems. It utilizes a spanning tree structure composed of
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Figure 3.9: Proposed Network Flow Model for 3 Customers, 2 Vehicles, and 2
Periods

three sets of arcs: T, L, and U. The set T forms the basis of the solution and
represents the spanning tree. Meanwhile, L and U are non-basic variables, with
L containing arcs with zero flow and U containing arcs with flow equal to their
capacity.

The algorithm iterates with the aim of finding non-basic arcs with
negative reduced costs to enter the basis. To compute the reduced costs, dual
variable values are needed for each node.

An improvement to this process is by proposing a procedure that iterates
over all nodes, starting from the root and continuing node by node in the
order used for tree construction (often referred to as the "thread order"). This
enhancement streamlines the algorithm’s execution, resulting in more efficient
performance overall.

Usually, any change on the MCFP would require executing the entire
algorithm from the beginning, the Diniz et al. (2020) paper modeled the MCFP
in a specific way that the algorithm only needs to adjust the arcs related to the
vehicle routing for subsequent solutions during the local search, rather than
recreate the entire model from scratch.

3.1.5
Participation in 12th DIMACS Implementation Challenge

The group behind the NSIRP algorithm participated in the 12th DIMACS
Implementation Challenge competition under the team name PUC-Rio and
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implemented four improvements to their algorithm, which are incorporated
into this work.

In contrast to the paper by Diniz et al. (2020), the team used an initial
constructor proposed in this work and described in Section 4.2. The following
two modifications, candidate arcs lookup and routing arcs update aim
to reduce the running time of the FFNS algorithm by limiting the search
for entering arcs and the lookup of non-basic arcs, respectively. The fourth
modification, maximum solution degradation, introduces a threshold for
solutions evaluated during each local search iteration to avoid running the
exact method on suboptimal solutions, thus reducing computational time. This
last modification inspired an improvement where the threshold is automatically
detected and included in this work, discussed in Section 4.5.3.

3.2
Hybrid Genetic Search (HGS)

The HGS framework, introduced by Vidal et al. (2012), addresses three varia-
tions of the VRP, namely the multi-depot, the periodic, and the multi-depot
periodic VRPs. As a memetic algorithm, HGS combines the principles of ge-
netic algorithms with neighborhood-based metaheuristics. The HGS frame-
work has gained significant attention in the literature due to its high perfor-
mance in terms of solution quality, convergence speed, and conceptual sim-
plicity. A recent implementation of HGS, the Hybrid Genetic Search for the
CVRP (HGS-CVRP) demonstrates its continued relevance and effectiveness
as a leading metaheuristic (Vidal, 2022).

As highlighted by Vidal (2022), three key characteristics contribute to
the effectiveness of the HGS framework:

– The integration of crossover-based and neighborhood-based methods
facilitates a balanced approach to exploration and exploitation. The
crossover operation introduces diversification within the solution space,
while the neighborhood search aggressively refines the solutions.

– Building on the insights from Glover and Hao (2011), as well as Vidal
et al. (2015), optimal solutions can often be found at the boundary be-
tween feasible and infeasible solutions. Consequently, the HGS framework
enables controlled exploration of infeasible solutions.

– Contrary to many genetic algorithms, the selection of parents and
survivors in HGS is not solely based on solution quality. Solution diversity
also plays a significant role in the selection process. This approach allows
the genetic algorithm to maintain the best and most diverse solutions,
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while the neighborhood search exploits the solutions in pursuit of optimal
results.

Algorithm 1 presents an overview of the HGS algorithm. The algorithm
begins by defining the initial penalty cost, which will be explained in greater
detail in Section 3.2.5. Next, the initial population is constructed, with a
further explanation provided in Section 3.2.1. The algorithm runs while there
is no improvement on the best individual from the population, during the
last nbIter iterations. In each iteration, two parents are selected from the
population, as described in Section 3.2.3. Subsequently, a crossover operator
is applied, generating a new offspring individual.

This new individual undergoes an education phase, comprising local
search operators that enhance its quality while using the penalty to enable the
exploration of infeasible solutions. If the educated offspring remains infeasible,
there is a 50% chance that it will be repaired by re-running the local search with
a penalty 10 times larger. This process will be further discussed in Section 3.2.4.
The offspring are then added to the population, and once the maximum size is
reached, some individuals are removed, as detailed in Section 3.2.2. Finally, the
algorithm adjusts the penalty value to maintain a target percentage of feasible
solutions within the population, which will be further clarified in Section 3.2.5.
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Algorithm 1: HGS Outline
penalty ← maxDistance/maxConsumption;

// Population Initialization
population.Initialize(penalty);

while population has no improvement on last nbIter do
// Parent Selection
parent1, parent2← SelectParents(population);

// Genetic Operators
offspring ← Crossover(parent1, parent2);

// Education
LocalSearch(offspring, penalty);
if offspring.IsInfeasible() and with 50% probability then

LocalSearch(offspring, 10 ∗ penalty);

// Population Management
population.Insert(offspring);

// Infeasible Solution Management
penalty ←ManagePenalties(population);

end

best← population.GetBestIndividual();

3.2.1
Population initialization

Algorithm 2 describes the process of initializing the population for the HGS
algorithm. The algorithm continues constructing the initial population until
its size reaches 4× µ. During this process, the algorithm first generates
random individuals, which are subsequently refined using local search and
repair operators. Each refined individual is then added to the population. The
following sections will provide a more detailed discussion of these components.
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Algorithm 2: HGS Population Initialization Outline
while population.Size() ≤ 4 ∗ µ do

individual← RandomIndividual();

// Education
LocalSearch(offspring, penalty);
if offspring.IsInfeasible() and with 50% probability then

LocalSearch(offspring, 10 ∗ penalty);

// Population Management
population.Insert(offspring);

end

3.2.2
Population management

In the HGS algorithm, the population is divided into two distinct subpopula-
tions: one for feasible solutions and another for infeasible solutions. Algorithm
3 illustrates how offspring are added to the appropriate subpopulation based
on their feasibility. Following this, the biased fitness of each offspring is calcu-
lated, which will be further discussed in Section 3.2.2.1.

When a subpopulation’s size reaches the maximum limit of µ + λ, the
algorithm proceeds to remove the λ worst individuals, as determined by their
biased fitness values. This survivor selection process will be elaborated upon
in Section 3.2.2.2.

Algorithm 3: HGS Population Management Outline
if offspring.IsFeasible then

subPopulation← population.GetFeasible();
else

subPopulation← population.GetInfeasible();

subPopulation.Insert(offspring);

// Biased Fitness Calculation
offspring.CalculateBiasedF itness(subPopulation);

// Survivor Selection
if subPopulation.Size() > µ + λ then

while subPopulation.Size() > µ do
subPopulation.RemoveWorstBiasedF itness();

end
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3.2.2.1
Biased Fitness Calculation

A distinguishing feature of the HGS from other genetic algorithms is its
fitness calculation criterion. Each individual is ranked based on the entire sub-
population. The rank is calculated using the following formula:

fP(s) = fϕ
P(s) +

(
1− nELITE

|P|

)
fDIV

P (s)

The first term, fϕ
P(s), represents the rank of individual s within the

sub-population P with respect to solution quality. The second term, fDIV
P (s),

denotes the rank of the individual s within the sub-population P in terms
of diversification quality. To calculate diversification, the HGS computes
the broken-pair distances for the nCLOSE most similar solutions in the sub-
population P . Lastly, a smaller weight is applied to the second term to ensure
that the top nELITE best individuals are preserved throughout the search
process.

3.2.2.2
Survivor Selection

Maintaining diversity and avoiding premature convergence are significant chal-
lenges in population-based algorithms, particularly when education intensifies
the parent selection tends to favor individuals with good characteristics. This
reduction in genetic material diversity within the population can hinder the
algorithm’s exploration capabilities. To address this challenge, the HGS frame-
work employs a two-component mechanism for survivor selection, which aims
to preserve the most promising solution characteristics and maintain diversity
in both subpopulations.

The first component of this mechanism consists of the biased-fitness
function definition and the explicit consideration of diversity during parent
selection (as discussed in Section 3.2.3). The second component, known as the
Survivor Selection procedure, is activated when one of the two subpopulations
reaches the maximum size µ + λ. This procedure identifies the µ individuals
that will proceed to the next generation, ensuring that the population diversity,
in terms of visit patterns, is preserved, and elite individuals in terms of cost
are protected. The λ discarded individuals are either clones or considered
unfavorable with respect to cost and diversity contribution based on their
biased fitness values.
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3.2.3
Parent selection

The parent selection step in the HGS algorithm involves two rounds of a binary
tournament. In each tournament round, two individuals are randomly selected
from the entire population. Their fitness values, fP(s), are then compared, and
the individual with the better fitness wins the round. This process is conducted
twice in order to select both parents for the crossover operation.

The Figure 3.10 illustrates this binary tournament process. In the first
tournament round, individual c from the feasible sub-population and individual
k from the infeasible sub-population is selected. Since individual c has a better
fitness value, it is chosen as the first parent. Next, a second tournament round is
conducted, in which individual i and individual m, both from the infeasible sub-
population, are selected. In this round, individual m prevails due to its superior
fitness. Consequently, the two parents selected for the crossover operation are
individual c and individual m.

Figure 3.10: This figure presents an example of Parent Selection using binary
tournaments. For the first tournament, two individuals, labeled as c and k,
are randomly chosen. Through the course of the tournament, the first parent
is identified. The same procedure is repeated for the second parent, with
individuals i and m participating in the second binary tournament.

3.2.4
Education (local search)

The education step is controlled by local search operators. The original HGS
paper Vidal et al. (2012) includes two stages: route improvement (RI) and
pattern improvement (PI). In the updated HGS-CVRP Vidal (2022), the PI
phase is excluded, and an additional neighborhood called Swap* is included in
the RI phase.

An efficient local search is applied to each solution resulting from the
crossover and Split algorithms. The RI local search uses Swap and Relocate
moves, generalized to sequences of two consecutive nodes, as well as 2-Opt
and 2-Opt*. The neighborhoods are limited to moves involving geographically
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close node pairs (i, j) such that j belongs to the Γ closest clients from i. The
granularity parameter Γ therefore limits the neighborhoods’ size to O(Γn). The
exploration of the moves is organized in random order of the indices i and j,
and any improving move is immediately applied. This process is pursued until
attaining a local minimum.

The classical Swap neighborhood exchanges two customers in place,
meaning one replaces the other and vice-versa. This neighborhood is typically
used for intra-route and inter-route improvements. However, the proposed
Swap* neighborhood differs as it involves exchanging two customers v and
v′ from different routes r and r′ without an in-place insertion. In this process,
v can be inserted in any position of r′, and v′ can likewise be inserted in any
position of r.

Evaluating all the Swap* moves would take computational time propor-
tional to Θ(n3) with direct implementation. However, more efficient search
strategies exist, which can significantly reduce the computational complexity
and improve the overall performance of the algorithm.

Due to the controlled exploration of infeasible solutions, it is possible
for a solution to remain infeasible after the local search. When this happens,
a Repair operation is applied with 50% probability. This operation consists
of running the local search with (10×) higher penalty coefficients, aiming to
recover a feasible solution.

3.2.5
Infeasible solution management

A notable advantage of the HGS framework is its ability to explore infeasible
solutions, which is achieved by defining a penalty cost for each excess product
and incorporating this additional cost into the overall solution cost. The
initial penalty cost is determined as the ratio between the maximum distance
between two clients or between a client and the suppliers, and the maximum
consumption. This penalty cost is updated to maintain the percentage of
feasible solutions in the entire population equal to ξ.

If the percentage of feasible solutions is smaller than ξ, indicating a
higher proportion of infeasible solutions than expected, the algorithm increases
the penalty cost by 20% without exceeding a maximum value of 100,000.
Conversely, if the percentage of feasible solutions is larger than ξ, implying a
higher number of feasible solutions than anticipated, the algorithm decreases
the penalty cost by 15% until it reaches a minimum value of 0.1.

By dynamically adjusting the penalty cost, the HGS framework encour-
ages a controlled exploration of infeasible solutions, which may lead to the
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discovery of optimal solutions at the boundary between feasible and infeasi-
ble regions. This approach contributes to the overall effectiveness of the HGS
algorithm in solving VRP variants.

3.3
Synergy

Integrating the NSIRP algorithm with the HGS framework presents a promis-
ing approach to enhance performance in addressing the IRP. The NSIRP algo-
rithm effectively narrows the search space and facilitates superior exploration
of the solution space by representing the inventory decisions from the IRP
as an MCFP. This methodology enables the efficient computation of optimal
inventory levels for a given routing and scheduling solution. Meanwhile, the
HGS framework, an advanced memetic algorithm, has exhibited remarkable
performance in solving various VRP variations, including capacitated, multi-
depot, periodic, and multi-depot periodic VRPs. The HGS’s forces reside in
its capacity to balance exploration and exploitation through crossover-based
and neighborhood-based techniques.

The NSIRP and HGS algorithms can be synergistically combined by
incorporating the NSIRP’s efficient local search within the HGS local search.
The NSIRP local search will rapidly ascertain the optimal inventory levels for
vehicle routing and scheduling solutions generated by the HGS algorithm. As
a result, the HGS algorithm can concentrate on optimizing vehicle routing and
scheduling while capitalizing on the NSIRP’s capability to swiftly compute
optimal inventory levels. This amalgamation has the potential to achieve
superior solutions in a reduced time frame, as it leverages the strengths of
both algorithms.



4
Proposed methodology

In this chapter, we present the HGSIRP methodology for addressing the IRP
by combining the strengths of the Hybrid Genetic Search (HGS) framework and
the local search operators from the Network Simplex IRP (NSIRP) algorithm.
To adapt the HGS for the IRP, we propose a new solution representation,
discussed in Section 4.1. The complete algorithm is outlined in Algorithm 4,
which highlights both differences and similarities with the original HGS.

Algorithm 4: HGSIRP Outline
penalty ← maxDistance/maxConsumption;

// Population Initialization – (HGS) w/ Constructive
population.Initialize(penalty);

while population has no improvement on last nbIter do
// Parent Selection – (HGS)
parent1, parent2← SelectParents(population);

// Genetic Operators
offspring ← Crossover(parent1, parent2);

// Education
LocalSearch(offspring, penalty);
if offspring.IsInfeasible() and with 50% probability then

LocalSearch(offspring, penalty);

// Population Management – (HGS)
population.Insert(offspring);

// Infeasible Solution Management – (HGS)
penalty ←ManagePenalties(population);

end
best← population.GetBestIndividual();

The Population Initialization is similar to the HGS, but utilizes a
new constructive heuristic described in Section 4.2. Parent Selection em-
ploys the previously discussed binary tournament method. The Genetic Op-
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erators introduces a novel crossover method, which is detailed in Section 4.3.
The Education phase retains its overall structure, including the repair oper-
ation, but now incorporates IRP neighborhoods from the NSIRP algorithm,
further elaborated in Section 4.4. Lastly, the Population Management and
Infeasible Solution Management steps remain consistent with the original
HGS approach, as covered in the previous chapter. Three new optimization
proposals are made in this work and will be discussed in Section 4.5.

4.1
Solution representation

The solution representation used in HGSIRP consists of four chromosomes:

– chromP(or shortly π): This chromosome represents the visit schedule for
each client. Each gene πt

n in π is a binary digit that indicates whether a
specific client n is visited or not during a specific period t. If the gene
value is 1, the client is visited during the period, while a value of 0 means
that the client is not visited.

– chromR(or shortly κ): This chromosome represents the route for each
vehicle. Each gene κt

k in κ encodes the route taken by vehicle k during a
specific period t. The gene value is an integer that represents the index
of the client in the solution. The order of clients visited by the vehicle is
encoded by the order of genes in the chromosome.

– chromT(or shortly τ): This chromosome represents a giant tour that
connects all routes from all vehicles in K for a specific period t. The gene
τ t concatenates the routes of all vehicles for a specific period. Each gene
value in τ is an integer that represents the index of the client in the
solution. The order of genes in the chromosome represents the order in
which the clients are visited in the giant tour.

– chromD(or shortly δ): This chromosome represents the delivery for each
client. Each gene δt

n in δ represents the amount delivered to a specific
client n during a specific period t. The gene value is a real number that
represents the quantity delivered to the client.

It’s worth noting that while the chromP and chromT chromosomes are
not absolutely essential for representing an IRP solution, they can be obtained
from chromR. However, this redundancy is required because genetic operators
are applied based on the chromosome format. For instance, a mutation operator
that switches a 0 to 1 can only be used on a binary chromosome, such as
chromP.
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An example solution is shown in Figure 4.1. The yellow box shows a
solution for an instance with five clients, three periods, and two vehicles. Each
route starts and ends at the supplier 0, and the amount delivered to each client
qt

n is shown in parentheses. The next three boxes illustrate the scheduling and
routing for each period, and the four chromosomes are detailed with their
specific genes.

Figure 4.1: This figure provides a detailed representation of a solution struc-
ture. The uppermost yellow box displays an overall solution. Below it, three
separate boxes provide a more visually intuitive representation of the same
solution, showcasing the three periods alongside their associated scheduling
and routing details. The final section, comprising four listed boxes, demon-
strates the quartet of chromosomes that encapsulate the same solution. This
multi-perspective view offers a comprehensive understanding of the solution’s
composition and functionality.
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4.2
Constructive Heuristic

To generate a new individual, we employed a constructive heuristic based on
the approach presented by Alvarez et al. (2018). This heuristic, known as the
Two-Phase method, is delineated in Algorithm 5.

The overarching heuristic entails the simulation of multiple scenarios,
relying on two key variables: the look_ahead parameter, which determines the
number of periods into the future for identifying clients facing stockouts, and
the ratio_consumption parameter, which signifies the proportion of a client’s
consumption utilized in the calculation of deliveries.

Using these parameters, the initial phase establishes two distinct client
sets: set C1, which includes clients that will run out of stock if not serviced
during the current period, and set C2, which includes clients that are good
candidates for service. In addition, the procedures also determine the amount
consumed by each client represent as D1 and D2, respectively for each set.

Subsequently, the second phase employs the insights gleaned from the
first phase to construct delivery routes. In contrast to the approach detailed
in Alvarez et al.’s (2018) work, we adopted a more intricate constructive
heuristic for the Vehicle Routing Problem (VRP), as proposed by Subramanian
(2012). This heuristic, outlined in Algorithm 6, incorporates a slight adaptation
to accommodate non-obligatory clients. The algorithm employs an insertion
technique that randomly selects between two insertion strategies and two
insertion criteria, considering the number of vehicles and their capacities. First,
the heuristic creates routes by inserting the obligatory clients from set C1.
Then, it tries to insert as many non-obligatory clients from set C2 into the
routes as possible.

This iterative process is carried out for each period, culminating in the
creation of a fresh solution. Additionally, we applied the Fast Flow Network
Simplex (FFNS) algorithm to optimize inventory-related expenses.

The constructive algorithm executes this simulation across various it-
erations, varying the look_ahead and ratio_consumption parameters. Ulti-
mately, the most favorable solution is selected from among these iterations.
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Algorithm 5: Outline of Alvarez et al.’s (2018) Two-Phase con-
structive heuristic – with adaptations highlighted.

best← ∅;
for ratio_consumption← 100% to 10% do

for look_ahead← 1 to T/2 do
Initialize s as an empty solution;

for t← 1 to T do
// Phase 1
c1, d1← obligatoryClients(t);
c2, d2←
candidateClients(t, ratio_consumption, look_ahead);

// Phase 2
r ← createCapacitedRoutes(c1, d1, c2, d2);

// Build Routing – chromR (or shortly κ)
s.κt ← r;

end

// Build Inventory – chromD (or shortly δ)

s.δ ← FFNS(s.κ);

// Build Scheduling – chromP (or shortly π)
s.π ← derived from s.κ;

// Build Giant Tour – chromT (or shortly τ)
s.τ ← derived from s.κ;

Update best with s if it is better;
end

end
return best;
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Algorithm 6: Outline of Subramanian’s (2012) constructive
heuristic for the VRP – with adaptations highlighted.

c1← list of obligatory clients;
d1← deliveries of obligatory clients;
c2← list of candidates clients;
d2← deliveries of candidates clients;

// Insert obligatory clients firsts
do

insertCriterion← MCFIC or NFIC (choose at random);
insertStrategy ← SIS or PIS (choose at random);
s← constructSolution(c1, d1, insertCritera, insertStrategy);

while (s is not feasible) and (attempt <= MAX_ATTEMPTS);

// Update solution with candidates clients

s← updateSolution(s, c2, d2, insertCriterion, insertStrategy);

Overall, the Two-Phase heuristic allows for the efficient generation of new
individuals that take into account the inventory costs and client consumption
constraints.

4.3
Genetic operator (crossover)

The crossover operation serves as a vital genetic operator within the realm of
Genetic Algorithm (GA). This operation is employed to forge a fresh solution
by utilizing two other solutions, commonly referred to as offspring and parents.
Its primary objective is to bolster diversity within the population. This is
achieved by crafting a novel individual, or solution, through the amalgamation
of two existing individuals, or parents. Importantly, this fusion is carried out in
a manner that upholds the distinctive characteristics of the parent solutions.
This approach prevents the generation of notably subpar solutions, while
simultaneously introducing innovative combinations that open up new avenues
of possibility.

As discussed on 2.1, the IRP encompasses three main decisions, the
scheduling, the routing, and the inventory. This work modeled these three
decisions into two main chromosomes, the chromD for inventory and chromR
for routing. But as said on 4.1, the chromP, encoding scheduling, and the
chromT, encoding the giant tour, plays an important role during the crossover
operation. As we will discuss in the following.
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The fundamental concept of the crossover operation applied to the IRP
is broken down into four key steps, illustrated in Figure 4.2:

1. Mixing parental scheduling decisions: The scheduling chromosome
chromP is formed by combining chromP from both parental solutions s1

and s2.

2. Preserving parental visit order: The giant tour chromosome chromT
is constructed using the created chromP and elements from both parental
solutions.

3. Formulating an effective: The deliveries chromosome chromD is
generated using a variant of the modeling used for the Minimum Cost
Flow Problem (MCFP) for a single vehicle, with chromT as input. This
step yields the optimal inventory, given the giant tour.

4. Formulating an effective routing: The routing chromosome chromR
is obtained by applying the Split algorithm (Vidal, 2016) to chromT and
chromD.

Figure 4.2: This figure illustrates the crossover process of the PTNU algorithm.
Here, ’Parent 1’ and ’Parent 2’, depicted in yellow and green respectively, are
utilized to generate a new ’Offspring’, illustrated in blue. Both chromP and
chromT chromosomes are derived from these parental inputs. Then, the FFNS
algorithm is applied to chromT, resulting in the generation of the chromD
chromosome. Following this, the Split algorithm is applied to chromD, thereby
creating the chromR chromosome.
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Algorithm 7: Detailed Outline of PTNU Crossover

Initialize so as an empty individual;

// 1. Build Scheduling – chromP (or shortly π)
cut← pick a random integer in (0, N);
N1 ← select cut random clients from N ;
N2 ← N \N1;
for t ∈ T , n ∈ N do

so.π
t
n ← s1.π

t
n if n ∈ N1, otherwise s2.π

t
n;

end

// 2. Build Giant Tour – chromT (or shortly τ)
for t ∈ T do

while n1 ∈ s1.τ
t or n2 ∈ s2.τ

t do
if n1 ∈ N1 and n2 ∈ N2 then

so.τ
t append ⟨n1, n2⟩ in random order;

else if n1 ∈ N1 then
so.τ

t append ⟨n1⟩;
else if n2 ∈ N2 then

so.τ
t append ⟨n2⟩;

end
end

end

// 3. Build Inventory – chromD (or shortly δ)
so.δ ← FFNSGT (so.τ);

// 4. Build Routing – chromR (or shortly κ)
so.κ← Split(so.τ, so.δ);

Algorithm 7 presents a detailed explanation of each step. The algorithm
starts by initializing an empty offspring solution so and the four chromosomes
chromP, chromT, chromD and chromR.

The construction of the scheduling chromosome chromP (or shortly π)
begins with the selection of a random integer cut in the range (0, N). This
value determines the portion of s1.π that will be copied to so.π. Then, the
client set N is divided into two sets: set N1, consisting of cut random clients,
and set N2, which is the complementary set. Finally, so.π is constructed by
iterating over all periods t ∈ T and all clients n ∈ N . If n ∈ N1, s1.π

t
n is copied

to so.π
t
n, otherwise, s2.π

t
n is copied.

The construction of the giant tour chromosome, chromT (or shortly τ)
involves iterating over both s1.τ and s2.τ simultaneously. The goal is to create
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an so.τ that follows the scheduling so.π and preserves the parental visit order.
This is achieved by checking if the current clients from both parents, n1 and
n2, were both selected for their respective sets N1 and N2. If this is the case, n1

and n2 are randomly selected and added to so.τ . If both n1 and n2 are in N1,
n1 is added to so.τ . If both are in N2, n2 is added. If the clients are exchanged,
meaning one is in N1 and the other is N2, they are ignored and evaluated at a
later time. This process is repeated for each t in T . It is important to highlight
that the sets N1 and N2 are disjoint sets, so since we append to the giant tour
only in cases when the client n is found on one of these sets, we cannot append
same customer several times.

The delivery chromosome chromD (or shortly δ) is constructed by solving
a MCFP based on the giant tour stored in so.τ using an adapted FFNS. In this
context, the giant tour represents the route assigned to a single vehicle, which
has a capacity equal to K ∗ Q. However, even though the vehicle capacity
is quite large, the maximum amount that can be delivered to a client is
constrained to Q. This ensures that the feasibility of the original problem
is maintained, where a single vehicle is limited to Q.

Finally, the routing chromosome chromR (or shortly κ) is constructed
using the Split algorithm Vidal (2016). The algorithm takes as input the giant
tour chromosome so.τ and the delivery chromosome so.δ, and performs a single
execution for every period t ∈ T . The output of the algorithm is the routing
chromosome so.κ that represents the detailed route of the vehicles, including
their delivery and pick-up operations, for each period.

The Periodic-Tour-Non-Uniform (PTNU) crossover method used in this
work allows the genetic algorithm to generate offspring solutions that maintain
the desirable features of the parent solutions, such as the scheduling and the
routing. The method also ensures good quality solutions, since the FFNS
method and the Split algorithm will respect the vehicle capacity using the
penalty and the inventory capacity constraint. The Figure 4.3 provides an
example of how the two parents are used to generate the offspring solution.

4.4
Education (local search)

This section delves into the education phase, outlined in Algorithm 8. The
education phase comprises two distinct steps: the execution of the CVRP local
search, followed by the IRP local search.
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Algorithm 8: HGSIRP Education Outline
// Local Search – (HGS) per period
for t ∈ T do

LocalSearchCV RP (offspring.ForPeriod(t), penalty);
end

// Local Search – (NSIRP) w/ penalty
LocalSearchIRP (offspring, penalty);

Both steps draw from the implementations in the HGS and NSIRP algo-
rithms, respectively, with a modification made in the former. To accommodate
the incorporation of the Capacitated Vehicle Routing Problem (CVRP) local
search from the HGS algorithm, we begin by recognizing the IRP as a general-
ization of the VRP, encompassing its routing aspect. By locking the schedul-
ing and delivered quantities in the offspring solution, we execute a CVRP
local search for each period. This localized search focuses solely on refining the
routing while keeping the inventory untouched. A visual representation of this
process is illustrated in Figure 4.4.

4.5
Optimization Proposals (OP)

This section outlines optimization proposals made to the HGSIRP algorithm
to enhance its efficiency and effectiveness in finding better solutions. The first
optimization (Section 4.5.1) involves adding a CVRP local search before the
IRP local search, which provides a better routing solution and enables the
IRP local search to focus on refining the scheduling and amount delivered
to each client. The second optimization (Section 4.5.2) allows the search into
infeasible vehicle capacity solutions by incorporating a new node representing
an auxiliary vehicle, which represents the excess of the associated vehicle
in the solution. Finally, the third optimization Section 4.5.3 incorporates
a heuristic to calculate the maximum inventory cost degradation, avoiding
expensive, unnecessary calculations. These modifications have proven valuable
in improving the performance of the HGSIRP algorithm.

4.5.1
CVRP local search (OP1)

The decision to incorporate the local search for the CVRP in this work was
deliberate, even though its usage is not strictly obligatory. For that reason
we consider it as a optimization proposal. Our investigation revealed that
its implementation enhances the quality of the solutions, as demonstrated in
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Figure 4.4: This figure illustrates the integration of the LocalSearch-CVRP
method. By conceptualizing each period as a standalone solution for a CVRP,
we can subject each of these solutions to the LocalSearch-CVRP process.
Through this, only the routing, chromR, and the giant tour chromosomes,
chromT, are enhanced, demonstrating the selective optimization of solution
components.

the subsequent chapter. The primary rationale behind this choice lies in our
observation that the local search methods employed in the context of the IRP
tend to focus primarily on movements within individual periods, potentially
lacking efficiency in terms of overall routing improvement. Consequently,
the HGSIRP algorithm integrates the CVRP local search as a precursor
to the IRP local search for each period, thereby enhancing the routing
aspect exclusively. This strategic sequencing results in a more streamlined
and effective IRP local search process, leading to the discovery of improved
solutions.

4.5.2
Infeasible vehicle capacity (OP2)

Incorporating the ability to explore infeasible solutions during the local search
is a key characteristic of HGS. This capability enables the metaheuristic to
navigate between structurally different feasible solutions. To leverage this
characteristic and improve the performance of the HGSIRP algorithm, it was
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essential to extending its capability to allow the search into infeasible vehicle
capacity solutions.

To extend the capability of HGSIRP to allow the exploration of infea-
sible solutions, we modified the IRP model presented in Diniz et al. (2020) by
adding a new node representing an auxiliary vehicle. The quantity represented
by this additional vehicle represents the excess of the associated vehicle in the
solution.

Figure 4.5 shows an example of the methodology to handle infeasible
capacities in the vehicle routing problem. The diagram presents the network
flow with source nodes s1 and s2, clients ci,j, and vehicles vi,j. The auxiliary
vehicles vii,j are introduced to handle the infeasible capacities of vehicles vi,j.
The arcs between the source nodes and the vehicles have a cost of the current
penalty value ωQ and a capacity of Q, while the arcs between the source nodes
and the auxiliary vehicles have a cost of zero and an infinite capacity. The
arcs between the auxiliary vehicles and vehicles have zero cost and infinite
capacity. The arc between the vehicles and the clients has now a capacity as
2×Q allowing the clients to receive the excess capacity.

s1 s2

c1,1

c2,1

c3,1

v1,1

vi1,1

v2,1

vi2,1

c1,2

c2,2

c3,2

v1,2

vi1,2

v2,2

vi2,2

e

Period 1 Period 2 Excess

Supplier

Customers

Vehicles

Figure 4.5: This figure portrays the proposed Network Flow Model for a
system encompassing 3 customers, 2 vehicles, and 2 periods. Additional vehicle
capacity is denoted by the yellow nodes, providing a visual representation of
the system’s enhanced transport potential.
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4.5.3
Maximum degradation (OP3)

The motivation behind using the cheaper heuristic before running the FFNS
in the IRP local search is to save computation time potentially. As seen in
Section 3.1, the IRP local search decodes a solution routing κ into the optimal
inventory solution δ by solving an MCFP using the FFNS algorithm. This exact
algorithm has been found to perform well, according to the work of Diniz et al.
(2020), however, running this algorithm for every local search can be time-
consuming. Thus, if we can determine an upper bound on the inventory cost
beforehand using the cheaper heuristic, we may avoid unnecessary calculations
and improve the overall efficiency of the algorithm.

Algorithm 9 shows how to avoid running the exact method during
the local search. A heuristic, Heuristic Degradation, is used to calculate the
heuristic inventory cost improvement, denoted as ∆δH . Suppose the sum of
the routing cost improvement and the heuristic inventory cost improvement is
greater than zero. In that case, the function returns a very large hypothetical
cost, represented by ∞, indicating that this solution will probably have a
degradation in its solution cost. Hence, it is not worth calculating the inventory
cost improvement using FFNS.

Algorithm 9: Outline of Local Search Evaluation – with adapta-
tions highlighted

// Routing Cost Improvement
κ← NeighborhoodOperator(si.κ, params);
∆κ ← RountingCost(κ)−RountingCost(si.κ);

// Heuristic Inventory Cost Improvement

∆δH ← HeuristicDegradation(si.κ, params);
if ∆κ + ∆δH

> 0 then
return ∞;

end

// Inventory Cost Improvement
δ ← FFNS(si.κ, params);
∆δ ← InventoryCost(δ)− InventoryCost(si.δ);

return ∆κ + ∆δ;

Algorithm 10 calculates the heuristic upper bound on the inventory cost
for neighborhoods that affect a single client like Insert, Remove, and Relocate.
It compares the inventory cost before and after using the FFNS method for
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a single client. The comparison is made by first calculating the inventory cost
that only affects the related client and then calculating the optimal inventory
cost for the client using the FFNS method. The maximum inventory cost
improvement is the difference between the current value and its optimal. The
algorithm is based on the network flow model represented in Figure 4.6. For
neighborhoods that affect two clients, like the Swap heuristic, we sum the
calculation for both clients.

Algorithm 10: HeuristicDegradation
n← params.n;
before← InventoryCostForClient(si, n);
after ←MinCostF lowForClient(si.κ, params, n);
return after − before

s1 s2 s3

c1,1

v1,1

c1,2

v1,2

c1,3

v1,3

Period 1 Period 2 Period 3

Supplier

Customer

Vehicle

Figure 4.6: This figure presents the Network Flow model specifically tailored
for the MinCostFlowForClient heuristic.



5
Computational Experiments and Analysis

To assess the proposed methodology, this study conducted three sets of
experiments: the evaluation of Optimization Proposals (OP) discussed in
Section 5.1, the comparison with existing literature in Section 5.2, and the
comparison with the 12th DIMACS Implementation Challenge in Section 5.3.
As a result of these experiments, 79 new Best Known Solution (BKS) were
obtained, positioning this work at the top of the competition.

The code was developed using C++ and compiled with GCC, utilizing
the -O3 optimization flag. It was written on top of the open source Hybrid
Genetic Search for the CVRP (HGS-CVRP) v.2.0.0 available at https:
//github.com/vidalt/HGS-CVRP/releases/tag/v2.0.0. All computational
experiments were performed using a single thread on an Intel Xeon Platinum
8275L @ 3GHz with 192 GB RAM. A single thread PassMark® of 2,386
MOps/Sec. The algorithm runs for a number nbIter of iterations without
improvements, or to a maximum CPU time limit TMAX of 1509 seconds, which
comes first. This follows the 12th DIMACS Implementation Challenge rules,
which dictate a maximum execution time limit proportional to a PassMark®

result of 2000, allowing up to 1800 seconds.
The parameters related to Hybrid Genetic Search (HGS) remained

consistent with and are described in Table 5.1. The Network Simplex IRP
(NSIRP) algorithm includes parameters only pertaining to the Iterated Local
Search (ILS) framework and, as such, is not directly applicable to this study.

Table 5.1: HGSIRP parameters
Parameter Value

nbIter Number of iterations without improvements 20000
TMAX The CPU time limit until termination (in seconds) 1509
µ Population size 25
λ Generation Size 40
nELITE Number of elite solutions considered in the fitness calculations 4
nCLOSE Number of close solutions considered in the diversity-contribution measure 5
Γ Granular search parameter 20
ξ Target proportion of feasible individuals for penalty adaption 0.2

https://github.com/vidalt/HGS-CVRP/releases/tag/v2.0.0
https://github.com/vidalt/HGS-CVRP/releases/tag/v2.0.0


Chapter 5. Computational Experiments and Analysis 47

5.1
Contribution of Optimization Proposals

This section presents a sensitivity analysis of each implementation improve-
ment discussed in Section 4.5. All instances from the classical benchmark with
an identifier equal to 1 were selected, resulting in 160 instances from the Small
subset and 30 instances from the Large subset. For each experiment, ten rounds
of independent executions were conducted, and the average result was used for
comparison.

To evaluate the contribution of the Optimization Proposals, this study
proposed five test scenarios, where each improvement was individually dis-
abled. All these scenarios, which we refer to as HGSIRP S, where S ⊆
{OP1, OP2, OP3} indicates the set of Optimization Proposals that were dis-
abled in each case, compared to the algorithm with all features turned on,
namely HGSIRP .

The CVRP local search (OP1) was disabled by simply ignoring
the method call. While disabling the Infeasible vehicle capacity (OP2)
was done by using the same model as proposed by Diniz et al. (2020). The
Maximum degradation (OP3) was disabled by allowing the execution of
the network simplex for every local search evaluation.

It is important to note that OP3 is necessary for solving large instances.
Without it, none of the large instances can progress past the population
initialization. For this reason, the experiments with the large instances were
all conducted with this feature enabled.

Two metrics are employed to assess the impact of deactivating the Opti-
mization Processes (OPs). The first metric, termed Primal Gap, represents
the disparity in the primal result obtained by each implementation:

HGSIRP S
UB −HGSIRPUB

HGSIRPUB

The second metric, denoted as Time Gap, measures the difference in the
time taken for the algorithm’s completion, factoring in the stopping criteria.
The algorithm concludes either after nbIter iterations without enhancements,
or when reaching a maximum CPU time limit of TMAX , whichever comes first:

HGSIRP S
T ime −HGSIRPT ime

HGSIRPT ime

The impact of disabling CVRP local search (OP1) showed a slight
improvement of 0.01% on the Primal Gap for the Small Set, but a degradation
of 0.74% for the Large set. The deterioration in the Time Gap was significant,
with an increase of 48.52% for the Small Set and 32.24% for the Large Set. The
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benefit of running the CVRP local search is to provide the IRP local search
with a better routing solution, allowing it to waste less time in its local search.
However, it may also reduce the diversity of the solution. The results show
that the quality of solutions for the Small set was minimally affected, while
the time spent on the IRP local search for the Large set allowed more CPU
execution, leading to better results.

The content of Section 5.1 illustrates five distinct scenarios that have
been examined. The initial three scenarios elucidate the effects of individually
deactivating each OP. The fourth scenario, on the other hand, delves into
the consequences of deactivating all procedures simultaneously. This can only
be accomplished with smaller instances, as the presence of the Maximum
degradation (OP3) is indispensable for the larger dataset, as highlighted in
the fifth scenario.

The impact of disabling Infeasible vehicle capacity (OP2) had a
deterioration of 0.06% and 0.13% on the Primal Gap for the Small and Large
sets, respectively. However, the Time Gap was positively impacted, with a
24.79% decrease for the Small set and a 6.26% decrease for the Large set. This
decrease in time can be explained by the fact that the adapted Minimum Cost
Flow Problem (MCFP) model proposed in Section 4.5.2 contains more nodes
and arcs to allow extra space for each vehicle.

The impact of Maximum degradation (OP3) had a limited impact on
the Primal Gap but worsened the Time Gap by 534.21%. This deterioration in
time can avoid finding better solutions for instances that are limited by time,
such as the Large set.

When all three OPs were removed, the deterioration in the Primal Gap
was 0.07% and 0.92% for the Small and Large sets, respectively. The Time
Gap also deteriorated by 434.60% for the Small set and 17.87% for the Large
set.

In summary, removing the Optimization Proposals has negatively im-
pacted the performance of the HGSIRP algorithm in finding better solutions
for the IRP. The results suggest that combining all three improvements is
recommended to achieve the best performance.

5.2
Comparison with literature methods

In this section, we compare our proposed algorithm, HGSIRP , with existing
literature on 1098 instances of the classical IRP benchmark. We performed
ten independent runs, selecting the average. The complete list of results can
be found on Appendix C.
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Table 5.2: The Effect of Disabling each Optimization Proposal.
OP1: CVRP Local Search, OP2: Infeasible vehicle capacity, OP3: Maximum
degradation

Primal Gap Time Gap
Small Large Small Large

HGSIRP OP 1 –0.01% +0.74% +48.52% +32.24%
HGSIRP OP 2 +0.06% +0.13% –24.27% –6.26%
HGSIRP OP 3 0.00% NA +534.21% NA
HGSIRP OP 1,OP 2,OP 3 +0.07% NA +434.60% NA
HGSIRP OP 1,OP 2 NA +0.92% NA +17.87%

5.2.1
Examination of data sources

We gathered the outcomes from 21 studies, drawing upon data provided by a
subset of these works. For instance, in the case of Schenekemberg et al. (2023),
we acquired the results directly from their website at https://www.leandro-
coelho.com/three-front-parallel. In the cases of Archetti et al. (2021),
Coelho and Laporte (2013), and Alvarez et al. (2018), we sourced the results
from https://or-brescia.unibs.it/instances#h.p_ID_48. The remaining
17 studies’ results were obtained from the Axiom Research Project, which is
responsible for the publication of works such as Vadseth et al. (2021), Skålnes
et al. (2022), Vadseth et al. (2023), and Skålnes et al. (2023b). These results
are available at http://axiomresearchproject.com/publications.

Out of the 21 literature methods reviewed, not all reported results for all
1098 instances. Some of these methods were published before the introduction
of newer instances, while others did not provide comprehensive results for
every category. Adulyasak et al. (2014) concentrated on Small Multi-Vehicle
instances, considering scenarios with 5 to 25 clients and either 2 or 3 vehicles.
For instances involving 30 to 50 clients, they limited the vehicles to 3 or 4.
Avella et al. (2018) also explored small Multi-Vehicle instances, but specifically
for 15 to 35 clients over 6 periods, and for 50-client scenarios over 3 periods.
Manousakis et al. (2021) provided results for all Small Multi-Vehicle instances,
excluding the Large instances with 200 clients. Skålnes et al. (2022) detailed
results for small scenarios with 15 to 30 clients over a span of 6 periods. Lastly,
Achamrah et al. (2022) only focused on large instances, considering vehicle
counts of 1, 2, or 3. Table 5.3 summarizes the information regarding these
studies and the specific instances for which they reported results.

Another noteworthy aspect concerning these results is the variation
in processors and the differing number of available threads employed by

https://www.leandro-coelho.com/three-front-parallel
https://www.leandro-coelho.com/three-front-parallel
https://or-brescia.unibs.it/instances#h.p_ID_48
http://axiomresearchproject.com/publications
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Table 5.3: Summary of literature methods addressing IRP classical benchmark
instances, categorized by single and multi-vehicle cases. The checkmark (✓)
indicates that the paper released results for all instances within its groups,
while the asterisk (∗) indicates that only parts of the group were released.

Single-Vehicle Multi-Vehicle

Small Large Small Large

Archetti et al. (2012) ✓ ✓

Coelho and Laporte (2013) ✓

Coelho and Laporte (2014) ✓

Adulyasak et al. (2014) *
Desaulniers et al. (2016) ✓

Archetti et al. (2017) ✓ ✓

Alvarez et al. (2018) ✓ ✓

Avella et al. (2018) *
Chitsaz et al. (2019) ✓ ✓ ✓ ✓

Alvarez et al. (2020) ✓ ✓

Diniz et al. (2020) ✓ ✓

Guimarães et al. (2020) ✓ ✓ ✓ ✓

Manousakis et al. (2021) * ✓ *
Archetti et al. (2021) ✓ ✓

Vadseth et al. (2021) ✓ ✓ ✓ ✓

Skålnes et al. (2022) * *
Solyalı and Süral (2022) ✓ ✓

Achamrah et al. (2022) ✓ *
Schenekemberg et al. (2023) ✓ ✓ ✓ ✓

Vadseth et al. (2023) ✓

Skålnes et al. (2023b) ✓ ✓

each study. In Table 5.4, we present a comprehensive list of the works
along with their respective processors and thread counts. The PassMark®

CPU Score was acquired from https://www.cpubenchmark.net/. In cases
where obtaining the CPU score proved unattainable, Coelho and Laporte
(2013) did not provide the CPU model, and both Archetti et al. (2012)
and Achamrah et al. (2022) featured an elusive CPU model designation. For
instances that utilize a single thread, we utilized the Single Thread score,
while for algorithms employing multiple threads, we referenced the Average
CPU Mark results. It’s important to note that the Average CPU Mark for
multi-threaded algorithms assumes the utilization of all available threads,
yet some works, such as Archetti et al. (2017), Guimarães et al. (2020),

https://www.cpubenchmark.net/
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and Schenekemberg et al. (2023), employed fewer threads. In such cases, we
normalized the value to align with the correct number of threads.

For a fair comparison between methods, it’s crucial that they utilize
the same amount of CPU resources during experiments. However, can be
challenging when considering variations in the CPU models. Following the
guidelines of the DIMACS (2022) Challenge, we established a hypothetical
machine with a PassMark® CPU Score of 2000 points as a baseline. We then
calculated a Time Adjust Factor (TAF) by comparing the PassMark® CPU
Score of each literature method to this hypothetical machine. This factor allows
us to standardize the time taken by each method to solve instances.

Table 5.4: Hardware and Solver Configurations for Literature Methods
Refference CPU Thread PassMark® TAF

Archetti et al. (2012) Intel Core2 Duo E6300 @ 1.86GHz - - -
Coelho and Laporte (2013) - - - -
Coelho and Laporte (2014) Core i7-2600 3.4 GHz 1 1739 0.870
Adulyasak et al. (2014) Intel Xeon 2.67 Ghz 8 5701 2.851
Desaulniers et al. (2016) Core i7-2600 3.4 GHz 1 1739 0.870
Archetti et al. (2017) Xeon W3680, 3.33 GHz 8 4630 2.315
Alvarez et al. (2018) Core i7-2600 3.4 GHz 1 8695 4.348
Avella et al. (2018) Core i7-2620, 2.70 GHz 1 1466 0.733
Chitsaz et al. (2019) Xeon X5650 2.67 GHz 1 1298 0.649
Alvarez et al. (2020) Xeon X5650 2.67 GHz 1 1298 0.649
Diniz et al. (2020) Intel Core i7-8700K 3.7 GHz 1 2747 1.374
Guimarães et al. (2020) Xeon E5-2630 v2 2.60 GHz 6 3742 1.871
Manousakis et al. (2021) Intel Core i7-7700 CPU 3.60 GHz 8 8658 4.329
Archetti et al. (2021) Xeon E5-1620 v3 3.50 GHz 1 2017 1.009
Vadseth et al. (2021) Xeon Gold 6144 3.5 GHz 1 2520 1.260
Skålnes et al. (2022) Intel E5-2670v3 2.3GHz 1 1702 0.851
Solyalı and Süral (2022) Xeon X5650 2.67 GHz 1 1298 0.649
Achamrah et al. (2022) Quad-core Intel Core i7 3.3 GH - - -
Schenekemberg et al. (2023) AMD EPYC 7532 2.4 GHz 24 20547 10.274
Vadseth et al. (2023) Xeon Gold 6144 3.5 GHz 1 2520 1.260
Skålnes et al. (2023b) Intel E5-2670v3 2.3GHz 1 1702 0.851
This Work Intel Xeon Platinum 8275L @ 3GHz 1 2386 1.193

5.2.2
Contribution to classical benchmark instances

In this section, we assess the performance of HGSIRP on classical benchmark
instances and compare it with results obtained from existing methods in the
literature. The outcomes are summarized in Table 5.5. Out of a total of 1098
instances, our work identified 657 instances (60%) achieving the BKS, and
for cases where the optimal solution remains unknown, we achieved better
results for 79 instances (20%). Notably, the overall average Duality Gap was
improved from 0.80% to 0.79%, signifying a reduction of 0.01%. The most
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significant enhancement was observed in the Large Multi-Vehicle instance set,
widely acknowledged as the most challenging. Among the 240 instances in this
set, we achieved improved solutions for 66 instances (28% and a reduction of
0.06% for the average Duality Gap.

Table 5.5: Performance Enhancements on Classical Benchmark Instances
Single-Vehicle Multi-Vehicle

Small Large Small Large

Instances 1098 160 60 638 240
BKS Found 657(60%) 127(79%) 1(2%) 462(72%) 67(28%)

Opened Instances 401 0 37 124 240
New BKS 79(20%) 0 1(3%) 12(10%) 66(28%)

Before - Avg. Duality Gap 0.80% 0% 0.80% 0.16% 3.03%
After - Avg. Duality Gap 0.79% 0% 0.79% 0.16% 2.97%

Difference - Avg. Duality Gap -0.01% 0% -0.01% 0% -0.06%

5.2.3
Literature methods performance in benchmark perspective

Within this section, we have integrated HGSIRP into the realm of top-
performing outcomes within the context of classical benchmark instances. This
integration involved the addition of 79 new results. Our focus then shifted
towards an extensive comparison of its overall performance against various
methods documented in the literature. As elaborated upon in Section 5.2.1,
it’s worth noting that not all studies presented outcomes for every instance.
To ensure a fairer assessment, we have segregated the results for distinct
categories: Small Single-Vehicle, Large Single-Vehicle, Small Multi-Vehicle, and
Large Multi-Vehicle sets.

To facilitate these comparisons, four key metrics take center stage. The
initial metric is BKS, which quantifies the instances where the methods
successfully make identifications within the realm of classical benchmark
instances. A related metric, BKS Unique, signifies the instances where our
method stood as the sole identifier among all others. Following this, we delve
into the Average Primal Gap , a metric calculated using the ensuing formula:

METHODUB − LITUB

LITUB

Lastly, the Average STime emerges as the average scaled-time, obtained
by incorporating the time reported by the method after applying the TAF. This
standardization is particularly valuable in mitigating the impact of varying
CPU models, rendering the comparative analysis more equitable.
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To offer a unified perspective on the average Primal Gap and average
STime, we present a complementary graph. In this graph, the X-axis depicts
the average Primal Gap, while the Y-axis represents the average STime.
Interpreting the graph, we observe that algorithms with superior performance
tend to be positioned closer to the origin.
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5.2.3.1
Small Single-Vehicle Set

The Table 5.6 displays the results obtained from the Small Single-Vehicle set
of instances, which was originally introduced by Archetti et al. (2007). Skålnes
et al. (2022) had to be excluded from the comparison due to incomplete
results. Among a total of 160 instances, both Guimarães et al. (2020) and
Schenekemberg et al. (2023) successfully identified all the BKS. Subsequently,
Diniz et al. (2020) achieved results for 140 instances, while the HGSIRP

algorithm reached a count of 127 instances.
When considering the average Primal Gap, the HGSIRP algorithm se-

cured the second position with a gap of only 0.04%. For a more visual repre-
sentation of these findings, refer to the graph presented in Figure 5.1, where
the positioning, in order, aligns HGSIRP (Castro2023) and Vadseth et al.
(2021) closer to the origin. Notably, both Archetti et al. (2012) and Alvarez
et al. (2020) omitted the reporting of execution times and, consequently, were
not included in this graphical representation.

Table 5.6: Performance Comparison on Small Single-Vehicle Instances
Paper BKS (%) BKS Unique Avg. Primal Gap Avg. STime

Archetti et al. (2012) 121(76%) 0 0.06%
Chitsaz et al. (2019) 30(19%) 0 1.76% 31.21
Alvarez et al. (2020) 65(1%) 0 1.79%
Diniz et al. (2020) 140(88%) 0 0.07% 44.46
Guimarães et al. (2020) 160(100%) 0 0.00% 112.23
Vadseth et al. (2021) 109(68%) 0 0.41% 5.83
Schenekemberg et al. (2023) 160(100%) 0 0.00% 50.44
HGSIRP 127(79%) 0 0.04% 21.82



Chapter 5. Computational Experiments and Analysis 55

Figure 5.1: Graphical Representation of Performance on Small Single-Vehicle
Instances

5.2.3.2
Large Single-Vehicle Set

The Table 5.7 presents results from the Large Single-Vehicle set, introduced
by Archetti et al. (2012). Regrettably, Manousakis et al. (2021) could not
be included in the comparison as they did not provide results for instances
with 200 customers. Among the total of 60 instances, the most impressive
performance was achieved by Schenekemberg et al. (2023), who identified
49 (81%) instances as BKS, with 26 of them being unique, resulting in an
average Primal Gap of 0.03%. The second most notable contribution comes
from Guimarães et al. (2020), who identified 32 (53%) BKS instances. In third
place, Achamrah et al. (2022) found 8 (13%) BKS instances. Following closely
are three other works, each identifying only 1 (2%) of the BKS instances:
HGSIRP , Archetti et al. (2012), and Vadseth et al. (2021). Despite Achamrah
et al. (2022) identifying more BKS instances compared to our work, we
achieved a lower average Primal Gap of 0.55%.

The relationships between these results are visually represented in Fig-
ure 5.2, demonstrating that HGSIRP (Castro2023) is the method closest to
the origin, followed by Guimarães et al. (2020). Notably, both Archetti et al.
(2012) and Vadseth et al. (2021) did not provide information regarding the
execution times of their results.
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Table 5.7: Performance Comparison on Large Single-Vehicle Instances
Paper BKS (%) BKS Unique Avg. Primal Gap Avg. STime

Archetti et al. (2012) 1(2%) 0 0.58%
Chitsaz et al. (2019) 0 0 4% 4327.41
Guimarães et al. (2020) 32(53%) 8 0.41% 10406.54
Vadseth et al. (2021) 1(2%) 1 1.91% 137.60
Achamrah et al. (2022) 8(13%) 0 1.99%
Schenekemberg et al. (2023) 49(82%) 26 0.03% 50142.26
HGSIRP 1(2%) 1 0.55% 926.32

Figure 5.2: Graphical Representation of Performance on Large Single-Vehicle
Instances

5.2.3.3
Small Multi-Vehicle Set

The Table 5.8 displays the outcomes obtained from the Small Multi-Vehicle
set, a set introduced by Coelho and Laporte (2013). Notably, Adulyasak et al.
(2014), Skålnes et al. (2022), and Avella et al. (2018) were excluded from the
comparison due to their incomplete results for the entire dataset. Among the
638 instances analyzed, Schenekemberg et al. (2023) achieved the majority of
the BKS instances, identifying 621 (97%), of which 55 are unique. Similarly,
Skålnes et al. (2023b) and Manousakis et al. (2021) identified 513 (80%) and
487 (76%) BKS instances, respectively, with each discovering a single new
unique BKS. HGSIRP secured the fourth position, identifying 462 (72%)
instances as BKS, including 12 unique cases. In addition to its fourth-place
ranking in terms of BKS instances found, this approach also exhibited superior
average Primal Gap results, second only to the outcomes of Schenekemberg
et al. (2023).

A visual representation can be found in Figure 5.3, where HGSIRP
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(Castro2023) is the method positioned closest to the origin within the graph.
Despite Schenekemberg et al. (2023) and Skålnes et al. (2022) achieving
better results, it’s worth noting that these approaches incurred higher CPU
consumption. Noteworthy is the absence of execution time data for the results
of Coelho and Laporte (2013) and Alvarez et al. (2020), which led to their
exclusion from this graphical analysis.

Table 5.8: Performance Comparison on Small Multi-Vehicle Instances
Paper BKS (%) BKS Unique Avg. Primal Gap Avg. STime
Coelho and Laporte (2013) 407(64%) 0 4.90%
Coelho and Laporte (2014) 342(54%) 0 2.79% 3403.06
Desaulniers et al. (2016) 356(56%) 0 19.40% 3432.50
Archetti et al. (2017) 218(34%) 0 1.51% 2639.46
Alvarez et al. (2018)_ILS 104(16%) 0 1.92% 130.43
Alvarez et al. (2018)_SA 245(38%) 0 1.42% 120.87
Chitsaz et al. (2019) 77(12%) 2 3.21% 44.92
Alvarez et al. (2020) 101(16%) 0 3.00%
Diniz et al. (2020) 290(45%) 0 0.53% 252.87
Guimarães et al. (2020) 446(70%) 0 0.43% 5951.52
Manousakis et al. (2021) 487(76%) 1 0.10% 13962.02
Archetti et al. (2021) 233(37%) 0 0.78% 417.30
Vadseth et al. (2021) 190(30%) 0 1.28% 79.73
Schenekemberg et al. (2023) 621(97%) 55 0.002% 20159.21
Solyalı and Süral (2022) 155(24%) 0 0.57% 299.69
Skålnes et al. (2023b) 513(80%) 1 0.08% 3303.70
HGSIRP 462(72%) 12 0.03% 97.75

Figure 5.3: Graphical Representation of Performance on Small Multi-Vehicle
Instances



Chapter 5. Computational Experiments and Analysis 58

5.2.3.4
Large Multi-Vehicle Set

Finally, the Table 5.9 displays the outcomes from the Large Multi-Vehicle set,
also initially proposed by Coelho and Laporte (2013). This analysis excludes
Manousakis et al. (2021) and Achamrah et al. (2022) due to their lack of results
for the complete dataset. Among the 240 instances considered, Skålnes et al.
(2023b) stands out as the most prolific contributor, identifying 97 (40%) BKS
results, with 96 of those being unique. Following closely, Schenekemberg et al.
(2023) secures the second position by finding 77 (32%) BKS results, 73 of
which are unique. Subsequently, HGSIRP identifies 67 (28%) BKS instances,
of which 66 are unique. When analyzing the average Primal Gap, HGSIRP

ranks in the second place with a gap of 0.34%, just slightly behind Skålnes
et al. (2023b) with a 0.25% gap.

A visual examination of Figure 5.4 reinforces the position of HGSIRP

(Castro2023) as the method situated nearest to the origin on the graph,
signifying a more favorable equilibrium between cost and CPU consumption.
Notably, Vadseth et al. (2023) is not included in this graph analysis due to the
absence of execution time data for their results.

Table 5.9: Performance Comparison on Large Multi-Vehicle Instances
Paper BKS (%) BKS Unique Avg. Primal Gap Avg. STime

Archetti et al. (2017) 0(0%) 0 7.74% 10001.60
Alvarez et al. (2018)_ILS 0(0%) 0 5.76% 261.20
Alvarez et al. (2018)_SA 0(0%) 0 6.87% 262.53
Chitsaz et al. (2019) 0(0%) 0 3.34% 3330.23
Guimarães et al. (2020) 0(0%) 0 18.10% 13471.20
Archetti et al. (2021) 0(0%) 0 7.06% 2097.47
Vadseth et al. (2021) 0(0%) 0 1.43% 959.81
Schenekemberg et al. (2023) 77(32%) 73 0.44% 74170.23
Solyalı and Süral (2022) 3(1%) 3 1.77% 2542.05
Skålnes et al. (2023b) 97(40%) 93 0.25% 6126.61
Vadseth et al. (2023) 0(0%) 0 1.63%
HGSIRP 67(28%) 66 0.34% 1571.53

5.2.4
In-Depth Analysis

In this section, we delve into a comprehensive analysis that involves
grouping instances based on the number of customers. The findings presented
in Table 5.10 highlight an examination of instances categorized according to
customer count. Our HGSIRP algorithm successfully identified 657 instances
that achieve the BKS (Best Known Solution) status, accounting for 60%
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Figure 5.4: Graphical Representation of Performance on Large Multi-Vehicle
Instances

of the total. Notably, 79 instances were newly discovered as BKS. Across
all instances, the average Primal Gap stands at 0.11%, indicative of the
algorithm’s impressive performance.

Of particular significance is the algorithm’s efficacy when dealing with
large instances. Notably, for instances with 100 clients, the results were ex-
ceptional, with the algorithm unveiling 42 new BKS. However, the algorithm’s
performance dipped when faced with instances featuring 200 clients, managing
to find only 1 (1%) new BKS. This outcome potentially underscores room for
improvement. Our analysis suggests that our method encounters challenges as
the number of customers increases, primarily due to the expanding complexity
of the Relocate and Swap neighborhoods, as discussed in 3.1.2. These neigh-
borhoods exhibit a computational complexity of O(T 2 ∗ K2 ∗ N2), implying
a quadratic increase in the time required to execute the Fast Flow Network
Simplex (FFNS) algorithm.

As discussed in the previous section, it is worth noting that HGSIRP

requires significantly less CPU time compared to other top methods. Conse-
quently, dedicating additional computational resources to run this category of
instances for an extended duration could potentially lead to more competitive
results.

5.3
Comparison with 12th DIMACS Implementation Challenge

In 2022, the 12th DIMACS Implementation Challenge selected multi-vehicle
instances for their competition. This instance set introduced two significant
changes in comparison to the instances proposed by Coelho et al. (2012a).
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Table 5.10: Distribution of Instances by Customer Count and Associated Best
Known Solutions (BKS)

Customers BKS BKS(%) Avg. Primal Gap
5 90 92% 0.02%
10 86 86% 0.01%
15 66 66% 0.02%
20 65(3) 65% 0.02%
25 53(3) 53% 0.07%
30 49(6) 49% 0.09%
35 42 84% 0.03%
40 47 94% 0.03%
45 46 92% 0.00%
50 69(24) 46% 0.10%
100 43(42) 43% 0.10%
200 1(1) 1% 0.74%
1098 657(79) 60% 0.11%

Firstly, 160 new instances were added, completing the small instances for
clients from 35 to 50 with the missing six-periods, resulting in a total of 1040
instances.

Secondly, a significant difference was made in the vehicle capacity calcu-
lation. The vehicle capacity was rounded to the nearest lower integer, unlike
the approach proposed by Coelho et al. (2012a), where the vehicle capacity
was rounded to the nearest integer. This rounding method resulted in 297 dif-
ferent instances, 227 for the small set and 70 new instances for the large set.
The details can be found in Appendix A.

The rules of the competition impose a CPU limit of a single thread
execution in at most 1800 seconds in a machine of a PassMark® result of
2000. Different machines could be used but the time should be linearized.
For calculating the ranking, the best solution across all participants gets a
10, the second 8, then 6, 5, 4, 3, 2, 1. In the case of ties, the points at
play are evenly split among the solvers involved. More detail can be found
at http://dimacs.rutgers.edu/programs/challenge/vrp/irp/.

During the competition, five teams submitted their results, but only the
top four were invited to present their work. The winning team was NTNU
AXIOM, whose solver, MrOptimal, employed a Branch and Cut (B&C) method
and an efficient matheuristic for warm-starting. The team GSCC, with the
solver 2FHBC, also employed the B&C method and placed second. The third-
place team, SmartLab, used a three-stage matheuristic with the methods Relax-
and-Fix, Local Search, and Tabu-Search in their solver TSMHA. The fourth-
place team was PUC-Rio with the solver IRP-PUC, an improved version of the

http://dimacs.rutgers.edu/programs/challenge/vrp/irp/
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NSIRP discussed in Section 3.1. The complete papers and presentations can be
found at http://dimacs.rutgers.edu/programs/challenge/vrp/papers-
videos/. The results are summarized in Table 5.11.

Table 5.11: Ranking of 12th DIMACS Implementation Challenge
Team Solver Avg. Point
NTNU AXIOM MrOptimal 7.574
GSCC 2FHBC 7.354
SmartLab TSMHA 6.691
PUC-Rio IRPUC++ 6.639
sb plasir 4.742

To compare HGSIRP with 12th DIMACS Implementation Challenge, we
followed the same rules. We ran the code on a single-threaded machine with
a PassMark® score of 2386, respecting the CPU time limit of 1509 seconds.
However, in this comparison, we deviated from the previous approach. Here,
we ran all instances for the entire CPU limit, ignoring the usual termination
criterion of nbIter iterations without improvements. The evaluation used the
same set of 1040 instances, including both the 160 new instances and the 297
different instances.

As shown in Table 5.12, if the proposed HGSIRP had participated in
the competition, it would have achieved first place. Comparing the results
with the best results of all five solvers, the HGSIRP would have found 332
better results with an average Primal Gap of -0.055%. The detailed results are
presented in Table 5.13.

Table 5.12: Ranking of 12th DIMACS Implementation Challenge considering
This Work

Team Solver Avg. Point
- HGSIRP 7.890
NTNU AXIOM MrOptimal 6.589
GSCC 2FHBC 6.335
PUC-Rio IRPUC++ 5.694
SmartLab TSMHA 5.621
sb plasir 3.837

http://dimacs.rutgers.edu/programs/challenge/vrp/papers-videos/
http://dimacs.rutgers.edu/programs/challenge/vrp/papers-videos/
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Table 5.13: Comparison of Best Solutions from 12th DIMACS Implementation
Challenge and This Work

Customers Better Equals Worst Avg. Primal Gap

5 0 76 1 0.002%
10 0 79 1 0.000%
15 2 76 2 0.001%
20 12 61 7 -0.017%
25 22 54 4 -0.040%
30 26 46 8 -0.065%
35 26 50 4 -0.090%
40 31 46 3 -0.119%
45 32 44 4 -0.133%
50 110 40 10 -0.276%

100 66 0 14 -0.398%
200 5 0 75 0.703%

Total 332 572 133 -0.055%
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Conclusions

In conclusion, this study proposed a novel solution to the IRP within the
context of Vender-Managed Inventory (VMI). The proposed solution combined
the Hybrid Genetic Search (HGS) framework with the Network Simplex
IRP (NSIRP) local search strategy, resulting in an efficient and competitive
approach that resulted in finding 79 new Best Known Solution (BKS) from
the classical benchmark.

Additionally, this study proposed three Optimization Proposals that in-
crease its efficiency and improve its ability to find better solutions. The pro-
posed modifications included adding a Capacitated Vehicle Routing Problem
(CVRP) local search, allowing for exploring infeasible vehicle capacity solu-
tions, and incorporating a heuristic to calculate the maximum inventory cost
degradation.

However, our experimentation revealed that the proposed algorithm’s
performance diminishes for instances involving a higher number of clients, in-
dicating the need for further investigation and improvements in these scenarios.

There are two potential optimizations that we did not pursue but could
enhance the algorithm’s performance. These possibilities could be explored in
future research:

– In the context of the crossover operation (Section 4.3), an alternative
approach could involve solving a Traveling Salesperson Problem (TSP)
for each time period based on the scheduling, rather than constructing
a new chromT keep the parents’ visit order. This approach has the
potential to generate superior solutions as inputs for the local search,
thereby enhancing Intensification. However, it might lead to a reduction
in Diversity since it would exclude the creation of slightly suboptimal
solutions.

– Regarding the implementation enhancement that addresses infeasible
vehicle capacities (Section 4.5.2), a more efficient strategy could be
considered. Instead of introducing a new auxiliary vehicle for each
existing vehicle, a more streamlined approach would be to use a single
auxiliary vehicle that accounts for the entire additional vehicle capacity.
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In future directions, applying this method to other variations of the IRP,
such as multi-product IRP, and related problems like Production Routing
Problem (PRP) can provide a more comprehensive evaluation of the proposed
algorithm’s versatility and effectiveness in different settings.

Another prospective avenue involves adapting the algorithm to optimize
the logistic ratio as the objective function. This second objective function,
which divides the total travel cost by inventory cost, offers greater realism in
specific logistics contexts.

Furthermore, an interesting avenue for experimentation would be to run
the proposed algorithm on newly proposed benchmarks by Skålnes et al.
(2023a), which would enable us to assess the algorithm’s performance in
comparison to new instances.

Overall, exploring these future directions can help us gain a deeper
understanding of the algorithm’s strengths and limitations, as well as its
potential for real-world applications.
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A
Vehicle Capacity Comparison

Table A.1 illustrates the variations in vehicle capacity between the multi-
vehicle instances presented in Coelho et al. (2012a) and those within the 12th

DIMACS Implementation Challengedataset.

Instance Coelho et al. (2012a) DIMACS (2022)
S_abs5n10_4_H6 240 239
S_abs4n25_2_H3 1015 1014
S_abs2n35_4_L3 653 652
S_abs1n20_4_L6 413 412
S_abs4n25_5_H3 406 405
S_abs5n35_2_L3 1270 1269
S_abs1n5_5_H3 58 57
S_abs1n40_5_H3 628 627
S_abs2n10_2_H6 328 327
S_abs5n35_5_L3 508 507
S_abs1n40_2_H3 1570 1569
S_abs1n5_2_H3 145 144
S_abs3n25_4_H3 530 529
S_abs1n30_4_H6 691 690
S_abs4n35_5_L3 487 486
S_abs4n35_2_L3 1217 1216
S_abs5n25_5_H3 470 469
S_abs1n50_2_L3 1823 1822
S_abs1n15_2_L3 620 619
S_abs5n25_2_H3 1175 1174
S_abs1n15_5_L3 248 247
S_abs4n10_4_H6 192 191
S_abs3n50_5_L3 767 766
S_abs5n5_4_H3 88 87
S_abs5n40_4_H3 822 821
S_abs3n15_2_L3 634 633
S_abs4n30_5_H6 444 443

Table A.1: Vehicle capacity comparison between Coelho
et al. (2012a) and DIMACS (2022) (cont...)
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Instance Coelho et al. (2012a) DIMACS (2022)
S_abs1n35_4_L3 692 691
S_abs4n50_4_L3 1017 1016
S_abs5n20_2_L6 863 862
S_abs3n30_4_H6 712 711
S_abs1n10_2_H6 436 435
S_abs2n5_2_H3 119 118
S_abs2n40_2_H3 1369 1368
S_abs3n40_2_H3 1642 1641
S_abs2n30_4_H6 634 633
S_abs3n40_5_H3 657 656
S_abs5n50_4_L3 1007 1006
S_abs2n15_2_L3 593 592
S_abs2n50_2_L3 1870 1869
S_abs2n50_5_L3 748 747
S_abs1n30_2_H6 1382 1381
S_abs1n30_5_H6 553 552
S_abs2n25_5_H3 414 413
S_abs1n15_4_L3 310 309
S_abs3n35_5_L3 653 652
S_abs1n20_2_L6 826 825
S_abs5n10_5_H6 192 191
S_abs3n25_5_H3 424 423
S_abs5n35_4_L3 635 634
S_abs3n25_2_H3 1060 1059
S_abs1n40_4_H3 785 784
S_abs2n10_4_H6 164 163
S_abs2n30_2_H6 1268 1267
S_abs1n25_2_H3 943 942
S_abs3n40_4_H3 821 820
S_abs5n15_2_L3 511 510
S_abs4n20_4_L6 393 392
S_abs2n50_4_L3 935 934
S_abs4n5_5_H3 54 53
S_abs5n30_4_H6 566 565
S_abs4n40_2_H3 1373 1372
S_abs2n20_5_L6 334 333
S_abs5n5_2_H3 176 175

Table A.1: Vehicle capacity comparison between Coelho
et al. (2012a) and DIMACS (2022) (cont...)
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Instance Coelho et al. (2012a) DIMACS (2022)
S_abs4n30_4_H6 555 554
S_abs3n15_4_L3 317 316
S_abs3n50_4_L3 959 958
S_abs4n15_2_L3 539 538
S_abs3n30_2_H6 1424 1423
S_abs4n5_2_L6 236 235
S_abs2n15_4_H6 323 322
S_abs1n45_4_H3 866 865
S_abs4n20_4_H3 375 374
S_abs3n5_4_L6 110 109
S_abs1n25_2_L6 856 855
S_abs3n30_2_L3 1421 1420
S_abs5n20_4_H3 434 433
S_abs4n15_2_H6 578 577
S_abs5n5_5_L6 74 73
S_abs5n5_2_L6 185 184
S_abs2n20_5_H3 313 312
S_abs5n25_4_L6 539 538
S_abs2n45_4_H3 793 792
S_abs2n25_5_L6 371 370
S_abs5n45_2_H3 1763 1762
S_abs3n10_4_L3 172 171
S_abs1n5_4_L6 127 126
S_abs3n25_5_L6 401 400
S_abs1n20_2_H3 800 799
S_abs4n25_4_L6 469 468
S_abs1n20_5_H3 320 319
S_abs2n5_2_L6 203 202
S_abs5n20_5_H3 347 346
S_abs4n15_4_H6 289 288
S_abs4n5_4_L6 118 117
S_abs2n15_2_H6 646 645
S_abs3n5_5_L6 88 87
S_abs5n15_4_H6 272 271
S_abs4n20_5_H3 300 299
S_abs1n25_4_L6 428 427
S_abs2n30_4_L3 678 677

Table A.1: Vehicle capacity comparison between Coelho
et al. (2012a) and DIMACS (2022) (cont...)
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Instance Coelho et al. (2012a) DIMACS (2022)
S_abs2n10_2_L3 409 408
S_abs1n5_2_L6 254 253
S_abs4n45_4_H3 852 851
S_abs1n20_4_H3 400 399
S_abs3n45_5_H3 713 712
S_abs4n25_2_L6 938 937
S_abs5n25_2_L6 1078 1077
S_abs4n10_4_L3 206 205
S_abs2n45_2_H3 1586 1585
S_abs2n25_4_L6 464 463
S_abs3n10_2_L3 344 343
S_abs1n30_4_L3 713 712
S_abs5n5_4_L3 88 87
S_abs5n40_4_L3 822 821
S_abs3n50_5_H3 767 766
S_abs4n30_5_L6 444 443
S_abs1n35_4_H3 692 691
S_abs3n15_2_H3 634 633
S_abs5n20_2_H6 863 862
S_abs4n50_4_H3 1017 1016
S_abs2n5_2_L3 119 118
S_abs2n40_2_L3 1369 1368
S_abs1n10_2_L6 436 435
S_abs3n30_4_L6 712 711
S_abs2n30_4_L6 634 633
S_abs3n40_2_L3 1642 1641
S_abs5n50_4_H3 1007 1006
S_abs3n40_5_L3 657 656
S_abs2n15_2_H3 593 592
S_abs2n50_2_H3 1870 1869
S_abs2n50_5_H3 748 747
S_abs4n25_2_L3 1015 1014
S_abs5n10_4_L6 240 239
S_abs1n20_4_H6 413 412
S_abs4n25_5_L3 406 405
S_abs2n35_4_H3 653 652
S_abs1n5_5_L3 58 57

Table A.1: Vehicle capacity comparison between Coelho
et al. (2012a) and DIMACS (2022) (cont...)
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Instance Coelho et al. (2012a) DIMACS (2022)
S_abs1n40_5_L3 628 627
S_abs5n35_2_H3 1270 1269
S_abs3n25_4_L3 530 529
S_abs1n40_2_L3 1570 1569
S_abs1n5_2_L3 145 144
S_abs5n35_5_H3 508 507
S_abs2n10_2_L6 328 327
S_abs1n30_4_L6 691 690
S_abs4n35_5_H3 487 486
S_abs4n35_2_H3 1217 1216
S_abs1n50_2_H3 1823 1822
S_abs1n15_2_H3 620 619
S_abs5n25_5_L3 470 469
S_abs1n15_5_H3 248 247
S_abs4n10_4_L6 192 191
S_abs5n25_2_L3 1175 1174
S_abs3n40_4_L3 821 820
S_abs1n25_2_L3 943 942
S_abs2n30_2_L6 1268 1267
S_abs4n20_4_H6 393 392
S_abs5n15_2_H3 511 510
S_abs4n5_5_L3 54 53
S_abs2n50_4_H3 935 934
S_abs4n40_2_L3 1373 1372
S_abs5n30_4_L6 566 565
S_abs4n30_4_L6 555 554
S_abs5n5_2_L3 176 175
S_abs2n20_5_H6 334 333
S_abs3n15_4_H3 317 316
S_abs3n50_4_H3 959 958
S_abs4n15_2_H3 539 538
S_abs3n30_2_L6 1424 1423
S_abs1n10_4_L6 218 217
S_abs1n30_2_L6 1382 1381
S_abs2n25_5_L3 414 413
S_abs1n30_5_L6 553 552
S_abs1n15_4_H3 310 309

Table A.1: Vehicle capacity comparison between Coelho
et al. (2012a) and DIMACS (2022) (cont...)
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Instance Coelho et al. (2012a) DIMACS (2022)
S_abs3n35_5_H3 653 652
S_abs5n10_5_L6 192 191
S_abs1n20_2_H6 826 825
S_abs5n35_4_H3 635 634
S_abs3n25_5_L3 424 423
S_abs2n10_4_L6 164 163
S_abs1n40_4_L3 785 784
S_abs3n25_2_L3 1060 1059
S_abs5n25_4_H6 539 538
S_abs2n45_4_L3 793 792
S_abs5n45_2_L3 1763 1762
S_abs2n25_5_H6 371 370
S_abs3n10_4_H3 172 171
S_abs1n5_4_H6 127 126
S_abs3n25_5_H6 401 400
S_abs1n20_2_L3 800 799
S_abs4n25_4_H6 469 468
S_abs1n20_5_L3 320 319
S_abs4n5_2_H6 236 235
S_abs1n45_4_L3 866 865
S_abs2n15_4_L6 323 322
S_abs4n20_4_L3 375 374
S_abs1n25_2_H6 856 855
S_abs3n5_4_H6 110 109
S_abs3n30_2_H3 1421 1420
S_abs4n15_2_L6 578 577
S_abs5n20_4_L3 434 433
S_abs5n5_5_H6 74 73
S_abs2n20_5_L3 313 312
S_abs5n5_2_H6 185 184
S_abs1n5_2_H6 254 253
S_abs2n10_2_H3 409 408
S_abs4n45_4_L3 852 851
S_abs1n20_4_L3 400 399
S_abs4n25_2_H6 938 937
S_abs3n45_5_L3 713 712
S_abs4n10_4_H3 206 205

Table A.1: Vehicle capacity comparison between Coelho
et al. (2012a) and DIMACS (2022) (cont...)
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Instance Coelho et al. (2012a) DIMACS (2022)
S_abs5n25_2_H6 1078 1077
S_abs2n45_2_L3 1586 1585
S_abs1n30_4_H3 713 712
S_abs3n10_2_H3 344 343
S_abs2n25_4_H6 464 463
S_abs5n20_5_L3 347 346
S_abs2n5_2_H6 203 202
S_abs4n15_4_L6 289 288
S_abs4n5_4_H6 118 117
S_abs2n15_2_L6 646 645
S_abs5n15_4_L6 272 271
S_abs3n5_5_H6 88 87
S_abs2n30_4_H3 678 677
S_abs4n20_5_L3 300 299
S_abs1n25_4_H6 428 427
L_abs2n200_2_H 8794 8793
L_abs6n100_2_L 4024 4023
L_abs5n200_2_L 8534 8533
L_abs8n50_2_H 1663 1662
L_abs3n200_2_H 8260 8259
L_abs5n50_2_L 1949 1948
L_abs8n200_2_H 8075 8074
L_abs5n100_2_L 4316 4315
L_abs4n100_2_L 3934 3933
L_abs9n200_2_H 8083 8082
L_abs5n50_2_H 1949 1948
L_abs6n100_2_H 4024 4023
L_abs2n200_2_L 8794 8793
L_abs5n200_2_H 8534 8533
L_abs3n200_2_L 8260 8259
L_abs8n200_2_L 8075 8074
L_abs5n100_2_H 4316 4315
L_abs8n50_2_L 1663 1662
L_abs4n100_2_H 3934 3933
L_abs9n200_2_L 8083 8082
L_abs8n100_4_H 2058 2057
L_abs2n200_4_H 4397 4396

Table A.1: Vehicle capacity comparison between Coelho
et al. (2012a) and DIMACS (2022) (cont...)
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Instance Coelho et al. (2012a) DIMACS (2022)
L_abs6n100_4_L 2012 2011
L_abs1n100_4_H 2102 2101
L_abs5n200_4_L 4267 4266
L_abs3n50_4_L 980 979
L_abs4n200_4_L 4266 4265
L_abs10n50_4_L 1028 1027
L_abs1n50_4_L 986 985
L_abs6n50_4_H 1107 1106
L_abs9n100_4_H 2117 2116
L_abs3n200_4_H 4130 4129
L_abs7n100_4_L 2001 2000
L_abs2n50_4_H 983 982
L_abs6n200_4_L 4304 4303
L_abs5n100_4_L 2158 2157
L_abs4n100_4_L 1967 1966
L_abs7n50_4_L 969 968
L_abs2n50_4_L 983 982
L_abs8n100_4_L 2058 2057
L_abs6n100_4_H 2012 2011
L_abs2n200_4_L 4397 4396
L_abs5n200_4_H 4267 4266
L_abs1n100_4_L 2102 2101
L_abs4n200_4_H 4266 4265
L_abs10n50_4_H 1028 1027
L_abs7n50_4_H 969 968
L_abs9n100_4_L 2117 2116
L_abs7n100_4_H 2001 2000
L_abs3n200_4_L 4130 4129
L_abs6n200_4_H 4304 4303
L_abs10n100_4_H 2037 2036
L_abs3n50_4_H 980 979
L_abs5n100_4_H 2158 2157
L_abs10n100_4_L 2037 2036
L_abs4n100_4_H 1967 1966
L_abs6n50_4_L 1107 1106
L_abs1n50_4_H 986 985
L_abs4n50_5_H 809 808

Table A.1: Vehicle capacity comparison between Coelho
et al. (2012a) and DIMACS (2022) (cont...)
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Instance Coelho et al. (2012a) DIMACS (2022)
L_abs3n50_5_L 784 783
L_abs3n200_5_H 3304 3303
L_abs6n200_5_L 3443 3442
L_abs8n200_5_H 3230 3229
L_abs7n50_5_L 775 774
L_abs7n50_5_H 775 774
L_abs3n200_5_L 3304 3303
L_abs6n200_5_H 3443 3442
L_abs8n200_5_L 3230 3229
L_abs3n50_5_H 784 783
L_abs4n50_5_L 809 808

Table A.1: Vehicle capacity comparison between Coelho
et al. (2012a) and DIMACS (2022)



B
Invalid Literature Solutions

Table B.1 displays a compilation of results that have not been considered in
this study due to their manifestation of a Lower Bound (LB) that surpasses an
Upper Bound (UB) established by a different work. The table encompasses
information about the instances and the corresponding works that were
disregarded, along with the work that identified a smaller UB.
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Instance LB Paper UB Paper LB UB Difference Duality Gap
S_abs4n25_2_H6 Coelho and Laporte (2014) Vadseth et al. (2021) 18293.67 15289.77 -3003.9 -16.42%
S_abs5n25_2_H6 Coelho and Laporte (2014) Diniz et al. (2020) 21582.22 18141.4 -3440.82 -15.94%
S_abs2n30_2_H6 Coelho and Laporte (2014) Schenekemberg et al. (2023) 21456.63 18715.71 -2740.92 -12.77%
S_abs1n25_2_H6 Coelho and Laporte (2014) Skålnes et al. (2023b) 16045.99 14621.29 -1424.7 -8.88%
S_abs2n25_2_H6 Coelho and Laporte (2014) Schenekemberg et al. (2023) 17533.01 16086.07 -1446.94 -8.25%
S_abs4n35_5_L3 Coelho and Laporte (2013) Diniz et al. (2020) 5087.1 4667.55 -419.55 -8.25%
S_abs4n30_2_H6 Coelho and Laporte (2014) Coelho and Laporte (2013) 17577.2 16697.1 -880.1 -5.01%
L_abs10n50_5_L Manousakis et al. (2021) Skålnes et al. (2023b) 16119.02 15520.79 -598.23 -3.71%
S_abs5n30_5_L6 Manousakis et al. (2021) Schenekemberg et al. (2023) 11264.5 11195.44 -69.06 -0.61%
S_abs2n15_4_H6 Manousakis et al. (2021) Schenekemberg et al. (2023) 13500.63 13499.78 -0.85 -0.01%
S_abs2n30_3_H3 Coelho and Laporte (2014) Chitsaz et al. (2019) 9584.51 9584.21 -0.3 -0.00%
S_abs2n50_3_H3 Schenekemberg et al. (2023) Chitsaz et al. (2019) 13118.66 13118.32 -0.34 -0.00%
S_abs2n15_5_H6 Manousakis et al. (2021) Schenekemberg et al. (2023) 14463.35 14462.98 -0.37 -0.00%

Table B.1: Invalid Literature Solutions



C
Detailed Computational Results

Table C.1 presents the average results after ten individual executions for
every literature instance, showing the obtained final cost and the Primal Gap
compared to BKS from literature.

Instance UB Time(s) Primal Gap
S_abs1n5_1_L3 1213 1 0.0000
S_abs1n5_1_L6 3147.74 4 0.0000
S_abs1n5_2_L3 1373.92 3 0.0371
S_abs1n5_2_L6 3736.12 14 0.0000
S_abs1n5_3_L3 1407.59 3 0.0000
S_abs1n5_3_L6 4617.59 24 0.0000
S_abs1n5_4_L3 1578.65 5 0.0000
S_abs1n5_4_L6 5466.63 36 0.0000
S_abs1n5_5_L3 1687.42 7 0.0000
S_abs1n5_5_L6 6406.12 51 0.0000
S_abs2n5_1_L3 967.04 1 0.0000
S_abs2n5_1_L6 2529.32 5 0.0000
S_abs2n5_2_L3 1155.87 2 0.0000
S_abs2n5_2_L6 3148.59 13 0.0000
S_abs2n5_3_L3 1561.07 5 0.0000
S_abs2n5_3_L6 4184.4 24 0.0000
S_abs2n5_4_L3 1791.03 4 0.0000
S_abs2n5_4_L6 5089.26 51 0.0006
S_abs2n5_5_L3 1997.96 6 0.0000
S_abs2n5_5_L6 5972.8 48 0.0000
S_abs3n5_1_L3 1721.33 2 0.0000
S_abs3n5_1_L6 4453.72 5 0.0000
S_abs3n5_2_L3 2401.33 3 0.0000
S_abs3n5_2_L6 5926.65 16 0.0000
S_abs3n5_3_L3 2960.75 4 0.0000
S_abs3n5_3_L6 7667.42 28 0.0000
S_abs3n5_4_L3 3567.05 9 0.0000
Table C.1: Detailed results for all IRP instances (cont...)
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Instance UB Time(s) Primal Gap
S_abs3n5_4_L6 9284.7 45 0.0009
S_abs3n5_5_L3 3942.69 6 0.3446
S_abs3n5_5_L6 11246.58 48 0.0000
S_abs4n5_1_L3 1381.71 2 0.0000
S_abs4n5_1_L6 3144.91 5 0.0000
S_abs4n5_2_L3 1701.71 4 0.0000
S_abs4n5_2_L6 3776.54 11 0.0000
S_abs4n5_3_L3 2275.59 5 0.0000
S_abs4n5_3_L6 4465.87 26 0.0000
S_abs4n5_4_L3 2616.03 8 0.0011
S_abs4n5_4_L6 5056.37 35 0.0000
S_abs4n5_5_L3 3303.39 11 0.0000
S_abs4n5_5_L6 6255.56 55 0.0000
S_abs5n5_1_L3 963.95 1 0.0000
S_abs5n5_1_L6 2230.31 3 0.0000
S_abs5n5_2_L3 1186.95 2 0.1865
S_abs5n5_2_L6 2855.06 11 0.0000
S_abs5n5_3_L3 1478.29 3 0.0000
S_abs5n5_3_L6 3842.3 28 0.0000
S_abs5n5_4_L3 1640.93 3 0.0000
S_abs5n5_4_L6 4876.62 34 0.0000
S_abs5n5_5_L3 1973.07 6 0.0005
S_abs1n5_1_H3 1870.88 1 0.0000
S_abs1n5_1_H6 5382.66 3 0.0000
S_abs1n5_2_H3 2028.95 3 0.0592
S_abs1n5_2_H6 5972.87 16 0.0000
S_abs1n5_3_H3 2061.27 3 0.0000
S_abs1n5_3_H6 6852.36 24 0.0000
S_abs1n5_4_H3 2234.65 5 0.0000
S_abs1n5_4_H6 7704.62 42 0.0000
S_abs1n5_5_H3 2340.08 7 0.0000
S_abs1n5_5_H6 8636.29 68 0.0000
S_abs2n5_1_H3 1553.82 1 0.0000
S_abs2n5_1_H6 4524.84 4 0.0000
S_abs2n5_2_H3 1756.07 2 0.0000
S_abs2n5_2_H6 5139.71 14 0.0000
S_abs2n5_3_H3 2156.69 5 0.0000
Table C.1: Detailed results for all IRP instances (cont...)
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Instance UB Time(s) Primal Gap
S_abs2n5_3_H6 6171.42 30 0.0000
S_abs2n5_4_H3 2386.4 4 0.0000
S_abs2n5_4_H6 7052.71 49 0.0044
S_abs2n5_5_H3 2594.02 6 0.0000
S_abs2n5_5_H6 7939.93 49 0.0000
S_abs3n5_1_H3 2610.7 2 0.0000
S_abs3n5_1_H6 6281.62 5 0.0000
S_abs3n5_2_H3 3290.7 3 0.0000
S_abs3n5_2_H6 7746.36 16 0.0000
S_abs3n5_3_H3 3828.96 4 0.0000
S_abs3n5_3_H6 9501.22 29 0.0000
S_abs3n5_4_H3 4445.22 10 0.0000
S_abs3n5_4_H6 11113.6 41 0.0000
S_abs3n5_5_H3 4810.52 5 0.2486
S_abs3n5_5_H6 13037.46 52 0.0002
S_abs4n5_1_H3 1823.15 2 0.0000
S_abs4n5_1_H6 4778.41 5 0.0000
S_abs4n5_2_H3 2143.15 4 0.0000
S_abs4n5_2_H6 5419.55 12 0.0000
S_abs4n5_3_H3 2716.21 5 0.0000
S_abs4n5_3_H6 6107.27 28 0.0000
S_abs4n5_4_H3 3052.49 8 0.0046
S_abs4n5_4_H6 6686.93 34 0.0000
S_abs4n5_5_H3 3741.83 11 0.0000
S_abs4n5_5_H6 7881.11 60 0.0000
S_abs5n5_1_H3 1821.42 1 0.0000
S_abs5n5_1_H6 4015.55 3 0.0000
S_abs5n5_2_H3 2044.42 2 1.0219
S_abs5n5_2_H6 4637.08 12 0.0000
S_abs5n5_3_H3 2315.04 3 0.0000
S_abs5n5_3_H6 5610.62 29 0.0000
S_abs5n5_4_H3 2476.72 3 0.0339
S_abs5n5_4_H6 6634.2 35 0.0000
S_abs5n5_5_H3 2818.21 6 0.0025
S_abs1n10_1_L3 1666.67 2 0.0000
S_abs1n10_1_L6 4073.19 14 0.0005
S_abs1n10_2_L3 2186.79 6 0.0000
Table C.1: Detailed results for all IRP instances (cont...)
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Instance UB Time(s) Primal Gap
S_abs1n10_2_L6 5599.07 27 0.0000
S_abs1n10_3_L3 2656.21 7 0.0000
S_abs1n10_3_L6 7050.9 60 0.0000
S_abs1n10_4_L3 3185.54 12 0.0000
S_abs1n10_4_L6 8353.54 82 0.0000
S_abs1n10_5_L3 3652.38 22 0.0000
S_abs1n10_5_L6 9753.7 257 0.0062
S_abs2n10_1_L3 2163.62 3 0.0000
S_abs2n10_1_L6 4990.79 8 0.0000
S_abs2n10_2_L3 2744.23 7 0.0000
S_abs2n10_2_L6 6458.59 23 0.0000
S_abs2n10_3_L3 3404.52 9 0.0000
S_abs2n10_3_L6 8221.94 47 0.0000
S_abs2n10_4_L3 4206.37 16 0.0233
S_abs2n10_4_L6 9820.37 78 0.0000
S_abs2n10_5_L3 4615.71 19 0.0000
S_abs2n10_5_L6 11577.48 168 0.0002
S_abs3n10_1_L3 1809.16 2 0.0000
S_abs3n10_1_L6 4445.56 11 0.0398
S_abs3n10_2_L3 2158.48 4 0.0000
S_abs3n10_2_L6 5197.4 20 0.0000
S_abs3n10_3_L3 2587.4 7 0.0046
S_abs3n10_3_L6 6123.03 44 0.0127
S_abs3n10_4_L3 2907.34 11 0.0200
S_abs3n10_4_L6 7192.53 83 0.0000
S_abs3n10_5_L3 3339.2 17 0.0000
S_abs3n10_5_L6 8176.62 168 0.0005
S_abs4n10_1_L3 1712.82 3 0.0000
S_abs4n10_1_L6 4764.15 10 0.0000
S_abs4n10_2_L3 2421.88 7 0.0000
S_abs4n10_2_L6 6139.11 21 0.0000
S_abs4n10_3_L3 3123.18 10 0.0000
S_abs4n10_3_L6 7423.9 47 0.0000
S_abs4n10_4_L3 3622.99 14 0.0000
S_abs4n10_4_L6 8585.83 58 0.0013
S_abs4n10_5_L3 4096.78 15 0.0000
S_abs4n10_5_L6 10021.98 101 0.0000
Table C.1: Detailed results for all IRP instances (cont...)
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Instance UB Time(s) Primal Gap
S_abs5n10_1_L3 1855.4 3 0.0000
S_abs5n10_1_L6 4463.61 12 0.0000
S_abs5n10_2_L3 2076.4 5 0.0000
S_abs5n10_2_L6 5055.19 21 0.0008
S_abs5n10_3_L3 2378.33 7 0.0000
S_abs5n10_3_L6 5741.73 40 0.0002
S_abs5n10_4_L3 2789.31 12 0.0000
S_abs5n10_4_L6 6522.53 89 0.0000
S_abs5n10_5_L3 2911.11 6 0.0000
S_abs5n10_5_L6 7132.12 79 0.0000
S_abs1n10_1_H3 3726.94 3 0.0000
S_abs1n10_1_H6 7783.16 15 0.0000
S_abs1n10_2_H3 4248.38 5 0.0000
S_abs1n10_2_H6 9299.95 31 0.0000
S_abs1n10_3_H3 4722.42 8 0.0000
S_abs1n10_3_H6 10743.86 67 0.0000
S_abs1n10_4_H3 5237.42 12 0.0000
S_abs1n10_4_H6 12089.75 92 0.3150
S_abs1n10_5_H3 5714.66 21 0.0292
S_abs1n10_5_H6 13449.08 195 0.0000
S_abs2n10_1_H3 3861.85 3 0.0000
S_abs2n10_1_H6 7813.82 8 0.0000
S_abs2n10_2_H3 4437.78 6 0.0000
S_abs2n10_2_H6 9280.42 24 0.0000
S_abs2n10_3_H3 5100.49 10 0.0004
S_abs2n10_3_H6 11046.82 50 0.0004
S_abs2n10_4_H3 5896.57 19 0.0003
S_abs2n10_4_H6 12648.29 76 0.0001
S_abs2n10_5_H3 6318.13 24 0.0000
S_abs2n10_5_H6 14399.44 187 0.0000
S_abs3n10_1_H3 3414.59 2 0.0000
S_abs3n10_1_H6 7720.98 11 0.3228
S_abs3n10_2_H3 3763.18 4 0.2144
S_abs3n10_2_H6 8445.51 22 0.0000
S_abs3n10_3_H3 4193.44 7 0.0523
S_abs3n10_3_H6 9357.14 37 0.0000
S_abs3n10_4_H3 4515.54 8 0.1195
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Instance UB Time(s) Primal Gap
S_abs3n10_4_H6 10442.39 71 0.0003
S_abs3n10_5_H3 4940.37 15 0.0000
S_abs3n10_5_H6 11428.86 181 0.0009
S_abs4n10_1_H3 3342.05 3 0.0000
S_abs4n10_1_H6 7894.27 11 0.0000
S_abs4n10_2_H3 4051.83 7 0.0000
S_abs4n10_2_H6 9284.36 23 0.0000
S_abs4n10_3_H3 4743.88 11 0.0000
S_abs4n10_3_H6 10588.51 66 0.0000
S_abs4n10_4_H3 5243.27 17 0.0000
S_abs4n10_4_H6 11743.92 73 0.0001
S_abs4n10_5_H3 5717.36 18 0.0000
S_abs4n10_5_H6 13174.95 127 0.0004
S_abs5n10_1_H3 3892.44 3 0.0000
S_abs5n10_1_H6 8568.48 12 0.0000
S_abs5n10_2_H3 4113.44 5 0.0000
S_abs5n10_2_H6 9200.85 25 0.0000
S_abs5n10_3_H3 4407.1 7 0.0000
S_abs5n10_3_H6 9886.04 34 0.0153
S_abs5n10_4_H3 4827.04 13 0.0000
S_abs5n10_4_H6 10656.94 69 0.0283
S_abs5n10_5_H3 4954.12 6 0.0000
S_abs5n10_5_H6 11251.4 77 0.0041
S_abs1n15_1_L3 2037.35 5 0.0000
S_abs1n15_1_L6 5287.24 20 0.0197
S_abs1n15_2_L3 2203.33 10 0.0000
S_abs1n15_2_L6 5885.76 45 0.0211
S_abs1n15_3_L3 2690.08 13 0.0000
S_abs1n15_3_L6 6758.19 74 0.0000
S_abs1n15_4_L3 3073.1 20 0.0114
S_abs1n15_4_L6 7661.59 134 0.0000
S_abs1n15_5_L3 3487.12 23 0.0000
S_abs1n15_5_L6 8658.01 274 0.0256
S_abs2n15_1_L3 2039.33 4 0.0000
S_abs2n15_1_L6 5316.69 15 0.0000
S_abs2n15_2_L3 2461.85 10 0.0000
S_abs2n15_2_L6 6052.46 36 0.0223
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Instance UB Time(s) Primal Gap
S_abs2n15_3_L3 2665.57 9 0.0000
S_abs2n15_3_L6 7008.11 76 0.0303
S_abs2n15_4_L3 3304.41 16 0.0000
S_abs2n15_4_L6 7971.77 95 0.0000
S_abs2n15_5_L3 3797.18 26 0.0000
S_abs2n15_5_L6 8966.64 248 0.0051
S_abs3n15_1_L3 2355.35 3 0.0000
S_abs3n15_1_L6 5806.34 14 0.4959
S_abs3n15_2_L3 2691.67 7 0.0000
S_abs3n15_2_L6 6891.21 47 0.0000
S_abs3n15_3_L3 2964.51 8 0.0000
S_abs3n15_3_L6 8038.43 81 0.0000
S_abs3n15_4_L3 3649.03 20 0.0000
S_abs3n15_4_L6 9163.67 113 0.0000
S_abs3n15_5_L3 4025.27 21 0.0000
S_abs3n15_5_L6 10312.89 216 0.0076
S_abs4n15_1_L3 2075.95 4 0.0000
S_abs4n15_1_L6 5257.04 21 0.0230
S_abs4n15_2_L3 2437.88 11 0.0074
S_abs4n15_2_L6 6047.53 55 0.0000
S_abs4n15_3_L3 2810.33 13 0.0000
S_abs4n15_3_L6 7082.09 90 0.0518
S_abs4n15_4_L3 3124.19 13 0.0000
S_abs4n15_4_L6 8237.47 106 0.0000
S_abs4n15_5_L3 3496.54 22 0.0000
S_abs4n15_5_L6 9314.02 179 0.0785
S_abs5n15_1_L3 2079.78 6 0.0000
S_abs5n15_1_L6 4967.54 24 0.0000
S_abs5n15_2_L3 2531.53 8 0.0692
S_abs5n15_2_L6 6280.02 41 0.0000
S_abs5n15_3_L3 3182.83 10 0.0959
S_abs5n15_3_L6 7520.76 49 0.0000
S_abs5n15_4_L3 3605.62 28 0.4278
S_abs5n15_4_L6 8868.3 118 0.0000
S_abs5n15_5_L3 4180.09 22 0.1138
S_abs5n15_5_L6 10353.38 186 0.0247
S_abs1n15_1_H3 4636.33 5 0.0000
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Instance UB Time(s) Primal Gap
S_abs1n15_1_H6 11007.19 31 0.0020
S_abs1n15_2_H3 4802.17 7 0.0000
S_abs1n15_2_H6 11579.09 65 0.0000
S_abs1n15_3_H3 5289.53 12 0.0000
S_abs1n15_3_H6 12473.34 113 0.0107
S_abs1n15_4_H3 5657.94 22 0.0000
S_abs1n15_4_H6 13365.21 179 0.0000
S_abs1n15_5_H3 6070.3 31 0.0000
S_abs1n15_5_H6 14376.27 264 0.0000
S_abs2n15_1_H3 4522.63 6 0.0000
S_abs2n15_1_H6 10809.83 18 0.0112
S_abs2n15_2_H3 4932.66 9 0.0000
S_abs2n15_2_H6 11553.49 50 0.0000
S_abs2n15_3_H3 5150.55 9 0.0000
S_abs2n15_3_H6 12503.81 92 0.0482
S_abs2n15_4_H3 5785.16 13 0.0000
S_abs2n15_4_H6 13499.78 125 0.0000
S_abs2n15_5_H3 6276.48 27 0.0461
S_abs2n15_5_H6 14474.51 233 0.0797
S_abs3n15_1_H3 5211.67 3 0.0000
S_abs3n15_1_H6 12096.84 13 0.0001
S_abs3n15_2_H3 5557.43 6 0.0000
S_abs3n15_2_H6 13248.45 52 0.0548
S_abs3n15_3_H3 5836.99 7 0.0000
S_abs3n15_3_H6 14380.04 91 0.0049
S_abs3n15_4_H3 6518.49 21 0.0000
S_abs3n15_4_H6 15499.6 143 0.0000
S_abs3n15_5_H3 6892.58 22 0.0017
S_abs3n15_5_H6 16635.66 258 0.0111
S_abs4n15_1_H3 4216.68 5 0.0000
S_abs4n15_1_H6 9702.03 17 0.1530
S_abs4n15_2_H3 4588.9 11 0.2499
S_abs4n15_2_H6 10478.47 55 0.0273
S_abs4n15_3_H3 4944.26 13 0.0000
S_abs4n15_3_H6 11505.37 98 0.0130
S_abs4n15_4_H3 5256.56 14 0.0000
S_abs4n15_4_H6 12672.81 107 0.0000
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Instance UB Time(s) Primal Gap
S_abs4n15_5_H3 5627.24 23 0.0000
S_abs4n15_5_H6 13748.98 243 0.0041
S_abs5n15_1_H3 4072.03 7 0.0000
S_abs5n15_1_H6 9216.16 24 0.0000
S_abs5n15_2_H3 4522.03 9 0.0000
S_abs5n15_2_H6 10536.45 54 0.0000
S_abs5n15_3_H3 5171.75 8 0.0000
S_abs5n15_3_H6 11782.44 65 0.0821
S_abs5n15_4_H3 5581.89 24 0.0358
S_abs5n15_4_H6 13110.18 122 0.0197
S_abs5n15_5_H3 6168.06 23 0.0000
S_abs5n15_5_H6 14606.85 229 0.0193
S_abs1n20_1_L3 2141.98 4 0.0000
S_abs1n20_1_L6 5997.18 36 0.2020
S_abs1n20_2_L3 2791.96 11 0.0000
S_abs1n20_2_L6 7259.85 59 0.0000
S_abs1n20_3_L3 3480.38 21 0.0000
S_abs1n20_3_L6 8654.07 90 0.0087
S_abs1n20_4_L3 4022.66 24 0.0000
S_abs1n20_4_L6 10137.72 139 0.0435
S_abs1n20_5_L3 4279.43 24 0.0000
S_abs1n20_5_L6 11656.01 364 -0.0175
S_abs2n20_1_L3 2367.96 4 0.0000
S_abs2n20_1_L6 5821.44 26 0.0161
S_abs2n20_2_L3 2535.04 10 0.0000
S_abs2n20_2_L6 6239.34 50 0.2811
S_abs2n20_3_L3 2778.54 11 0.0000
S_abs2n20_3_L6 6791.26 56 0.0000
S_abs2n20_4_L3 3002.57 13 0.1488
S_abs2n20_4_L6 7457.15 135 -0.0059
S_abs2n20_5_L3 3215.92 23 0.0544
S_abs2n20_5_L6 8151.49 155 0.0998
S_abs3n20_1_L3 2453.79 4 0.0000
S_abs3n20_1_L6 6663.49 30 0.0297
S_abs3n20_2_L3 2681.93 10 0.0000
S_abs3n20_2_L6 7351.06 71 0.0000
S_abs3n20_3_L3 2928.09 10 0.0000
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Instance UB Time(s) Primal Gap
S_abs3n20_3_L6 8264.7 90 0.0000
S_abs3n20_4_L3 3508.79 13 0.0000
S_abs3n20_4_L6 9264.49 157 0.0421
S_abs3n20_5_L3 3879.79 16 0.0000
S_abs3n20_5_L6 10366.64 238 0.0369
S_abs4n20_1_L3 3017.56 11 0.0000
S_abs4n20_1_L6 7201.08 39 0.0282
S_abs4n20_2_L3 3455.87 14 0.0000
S_abs4n20_2_L6 8200.31 87 0.0000
S_abs4n20_3_L3 3984.13 22 0.0000
S_abs4n20_3_L6 9854 145 0.0029
S_abs4n20_4_L3 4668.98 28 0.0000
S_abs4n20_4_L6 11452.79 236 0.0268
S_abs4n20_5_L3 5111.03 31 0.0000
S_abs4n20_5_L6 13076.12 390 0.0438
S_abs5n20_1_L3 2705.89 7 0.0000
S_abs5n20_1_L6 6820.71 28 0.0000
S_abs5n20_2_L3 3273.17 16 0.0000
S_abs5n20_2_L6 8368.75 80 0.0000
S_abs5n20_3_L3 3980.23 20 0.0000
S_abs5n20_3_L6 10222.62 150 0.0183
S_abs5n20_4_L3 4620.77 21 0.0000
S_abs5n20_4_L6 12271.12 249 0.0165
S_abs5n20_5_L3 5362.01 37 0.0000
S_abs5n20_5_L6 14210.4 425 0.1099
S_abs1n20_1_H3 5593.01 4 0.0000
S_abs1n20_1_H6 12965.48 45 0.0151
S_abs1n20_2_H3 6242.75 11 0.0000
S_abs1n20_2_H6 14237.37 61 0.0004
S_abs1n20_3_H3 6906.53 20 0.1032
S_abs1n20_3_H6 15632.9 106 0.0204
S_abs1n20_4_H3 7451.82 24 0.0000
S_abs1n20_4_H6 17145.56 164 0.0230
S_abs1n20_5_H3 7699.2 24 0.0000
S_abs1n20_5_H6 18680.65 339 0.1448
S_abs2n20_1_H3 5812.35 4 0.0000
S_abs2n20_1_H6 13128.37 21 0.0003
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Instance UB Time(s) Primal Gap
S_abs2n20_2_H3 5979.59 10 0.0000
S_abs2n20_2_H6 13599.65 60 0.0650
S_abs2n20_3_H3 6224.11 12 0.0000
S_abs2n20_3_H6 14141.85 81 0.0795
S_abs2n20_4_H3 6450.37 17 0.2308
S_abs2n20_4_H6 14803.1 137 0.0059
S_abs2n20_5_H3 6636.51 27 0.0211
S_abs2n20_5_H6 15496.93 167 0.0375
S_abs3n20_1_H3 6001.53 4 0.0000
S_abs3n20_1_H6 13110.51 32 0.0275
S_abs3n20_2_H3 6238.99 12 0.0000
S_abs3n20_2_H6 13774.43 67 0.0001
S_abs3n20_3_H3 6487.39 10 0.0000
S_abs3n20_3_H6 14724.73 119 0.0226
S_abs3n20_4_H3 7060.93 14 0.0000
S_abs3n20_4_H6 15699.78 123 0.0000
S_abs3n20_5_H3 7434.33 19 0.0003
S_abs3n20_5_H6 16820.49 290 0.1026
S_abs4n20_1_H3 5907.68 11 0.0000
S_abs4n20_1_H6 13285.28 24 0.0070
S_abs4n20_2_H3 6335.48 16 0.0000
S_abs4n20_2_H6 14317.13 108 0.0003
S_abs4n20_3_H3 6873.98 26 0.0000
S_abs4n20_3_H6 15976.18 196 0.0000
S_abs4n20_4_H3 7544.17 34 0.0000
S_abs4n20_4_H6 17584.58 275 -0.0110
S_abs4n20_5_H3 8002.23 38 0.0000
S_abs4n20_5_H6 19188.11 427 0.0583
S_abs5n20_1_H3 6436.13 7 0.0000
S_abs5n20_1_H6 14148.34 31 0.0000
S_abs5n20_2_H3 7003.41 17 0.0000
S_abs5n20_2_H6 15688.12 100 0.0000
S_abs5n20_3_H3 7711.03 21 0.0000
S_abs5n20_3_H6 17549.13 117 0.0000
S_abs5n20_4_H3 8344.42 31 0.0000
S_abs5n20_4_H6 19610.93 310 0.0337
S_abs5n20_5_H3 9085.7 39 0.0003
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Instance UB Time(s) Primal Gap
S_abs5n20_5_H6 21551.71 578 0.1096
S_abs1n25_1_L3 2695.11 6 0.0000
S_abs1n25_1_L6 6940.59 45 0.2968
S_abs1n25_2_L3 2987.47 14 0.0000
S_abs1n25_2_L6 7331.85 69 0.0315
S_abs1n25_3_L3 3357.57 19 0.0000
S_abs1n25_3_L6 8329.72 125 0.6566
S_abs1n25_4_L3 3803.92 21 0.0000
S_abs1n25_4_L6 9118.22 156 0.2892
S_abs1n25_5_L3 3949.39 23 0.0000
S_abs1n25_5_L6 10160.02 329 0.0783
S_abs2n25_1_L3 2854.01 11 0.0000
S_abs2n25_1_L6 7148.45 51 0.9131
S_abs2n25_2_L3 3340.88 18 0.0087
S_abs2n25_2_L6 8162.33 83 0.0075
S_abs2n25_3_L3 3791.53 25 0.0000
S_abs2n25_3_L6 9510.16 184 0.1028
S_abs2n25_4_L3 4340.93 33 0.0032
S_abs2n25_4_L6 10856.64 233 0.0166
S_abs2n25_5_L3 4849.87 49 0.0136
S_abs2n25_5_L6 12400.2 504 0.3263
S_abs3n25_1_L3 2871.43 6 0.0000
S_abs3n25_1_L6 7346.48 43 0.0000
S_abs3n25_2_L3 3292.85 13 0.0000
S_abs3n25_2_L6 8522.12 110 0.0000
S_abs3n25_3_L3 3889.69 19 0.0000
S_abs3n25_3_L6 10168.37 162 0.1538
S_abs3n25_4_L3 4508.65 23 0.0000
S_abs3n25_4_L6 11867.67 310 0.1914
S_abs3n25_5_L3 5050.35 28 0.0000
S_abs3n25_5_L6 13684.48 422 -0.0098
S_abs4n25_1_L3 2930.73 13 0.0000
S_abs4n25_1_L6 7324.08 45 0.0019
S_abs4n25_2_L3 3099.67 21 0.0000
S_abs4n25_2_L6 7746.19 98 0.0000
S_abs4n25_3_L3 3513.84 29 0.0752
S_abs4n25_3_L6 8669.85 181 0.0252
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Instance UB Time(s) Primal Gap
S_abs4n25_4_L3 3897.74 31 0.0218
S_abs4n25_4_L6 9669.72 264 0.1952
S_abs4n25_5_L3 4230.81 52 0.0000
S_abs4n25_5_L6 10565.62 250 0.1020
S_abs5n25_1_L3 2753 6 0.0000
S_abs5n25_1_L6 6880.98 40 0.2615
S_abs5n25_2_L3 3304.74 14 0.0000
S_abs5n25_2_L6 8322.11 119 0.0702
S_abs5n25_3_L3 3918.3 16 0.0000
S_abs5n25_3_L6 10048.22 145 0.2291
S_abs5n25_4_L3 4470.86 19 0.0000
S_abs5n25_4_L6 11988.78 322 0.1227
S_abs5n25_5_L3 5112.16 27 0.0000
S_abs5n25_5_L6 13870.28 537 0.1545
S_abs1n25_1_H3 6758.89 6 0.0000
S_abs1n25_1_H6 14171.87 38 0.1252
S_abs1n25_2_H3 7052.55 14 0.0000
S_abs1n25_2_H6 14634.35 85 0.0893
S_abs1n25_3_H3 7424.85 19 0.0000
S_abs1n25_3_H6 15583.56 155 0.1514
S_abs1n25_4_H3 7818.93 17 0.0000
S_abs1n25_4_H6 16402.12 160 0.1226
S_abs1n25_5_H3 8004.24 23 0.0000
S_abs1n25_5_H6 17460.07 317 0.0912
S_abs2n25_1_H3 7154.75 11 0.0000
S_abs2n25_1_H6 15049.86 38 0.2577
S_abs2n25_2_H3 7647.13 17 0.0000
S_abs2n25_2_H6 16092.18 99 0.0380
S_abs2n25_3_H3 8097.37 25 0.0000
S_abs2n25_3_H6 17459.55 235 0.0687
S_abs2n25_4_H3 8648.13 33 0.0000
S_abs2n25_4_H6 18794.83 327 -0.0498
S_abs2n25_5_H3 9152.05 49 0.0582
S_abs2n25_5_H6 20336.19 744 0.1947
S_abs3n25_1_H3 7607.39 6 0.0000
S_abs3n25_1_H6 16172.38 49 0.0003
S_abs3n25_2_H3 8029.89 14 0.0000
Table C.1: Detailed results for all IRP instances (cont...)



Appendix C. Detailed Computational Results 93

Instance UB Time(s) Primal Gap
S_abs3n25_2_H6 17364.93 130 0.0094
S_abs3n25_3_H3 8629.85 21 0.0000
S_abs3n25_3_H6 19013.47 196 0.0141
S_abs3n25_4_H3 9251.79 25 0.0002
S_abs3n25_4_H6 20704.33 307 0.0277
S_abs3n25_5_H3 9801.31 29 0.0004
S_abs3n25_5_H6 22552.94 467 -0.0206
S_abs4n25_1_H3 6981.14 14 0.0000
S_abs4n25_1_H6 14821.94 40 0.0088
S_abs4n25_2_H3 7159.54 20 0.0000
S_abs4n25_2_H6 15292.92 87 0.0206
S_abs4n25_3_H3 7577.28 34 0.0000
S_abs4n25_3_H6 16222.86 154 0.0178
S_abs4n25_4_H3 7968.55 39 0.0447
S_abs4n25_4_H6 17204.06 205 0.0223
S_abs4n25_5_H3 8247.54 48 0.0000
S_abs4n25_5_H6 18117.12 222 0.0261
S_abs5n25_1_H3 8058.61 6 0.0002
S_abs5n25_1_H6 16796.62 51 0.6357
S_abs5n25_2_H3 8610.25 15 0.0000
S_abs5n25_2_H6 18158.19 159 0.0926
S_abs5n25_3_H3 9228.11 17 0.0002
S_abs5n25_3_H6 19855.08 205 0.1396
S_abs5n25_4_H3 9783.17 21 0.0000
S_abs5n25_4_H6 21784.52 366 0.0280
S_abs5n25_5_H3 10428.37 27 0.0000
S_abs5n25_5_H6 23696.41 724 0.0901
S_abs1n30_1_L3 3189.6 8 0.0000
S_abs1n30_1_L6 7822.68 45 0.0385
S_abs1n30_2_L3 3565.6 19 0.0000
S_abs1n30_2_L6 8842.82 138 0.2160
S_abs1n30_3_L3 4013.46 24 0.0000
S_abs1n30_3_L6 10166.16 230 0.2106
S_abs1n30_4_L3 4482.4 36 0.0000
S_abs1n30_4_L6 11646.31 690 0.0293
S_abs1n30_5_L3 5076.56 51 0.0000
S_abs1n30_5_L6 13184.65 740 -0.1952
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Instance UB Time(s) Primal Gap
S_abs2n30_1_L3 3119.16 17 0.0000
S_abs2n30_1_L6 7442.69 50 0.1161
S_abs2n30_2_L3 3435.42 25 0.0000
S_abs2n30_2_L6 8210.54 99 0.0659
S_abs2n30_3_L3 3892.59 41 0.0000
S_abs2n30_3_L6 9222.97 125 0.0203
S_abs2n30_4_L3 4219.9 32 0.0045
S_abs2n30_4_L6 10361.43 142 0.2681
S_abs2n30_5_L3 4669.58 54 0.0000
S_abs2n30_5_L6 11550.97 401 0.1014
S_abs3n30_1_L3 3224.88 8 0.0000
S_abs3n30_1_L6 7938.67 63 0.5940
S_abs3n30_2_L3 3369.2 17 0.0000
S_abs3n30_2_L6 8203.85 84 0.0712
S_abs3n30_3_L3 3573.68 22 0.0000
S_abs3n30_3_L6 9060.89 115 0.1223
S_abs3n30_4_L3 3895.14 25 0.0005
S_abs3n30_4_L6 9993.92 155 0.2752
S_abs3n30_5_L3 4211.96 25 0.0005
S_abs3n30_5_L6 11050.1 313 0.2441
S_abs4n30_1_L3 3145.84 21 0.0045
S_abs4n30_1_L6 7344.57 45 0.0305
S_abs4n30_2_L3 3422.3 39 0.0000
S_abs4n30_2_L6 8076.54 154 0.1322
S_abs4n30_3_L3 3783.19 56 0.0103
S_abs4n30_3_L6 9084.68 161 0.1920
S_abs4n30_4_L3 4249.42 48 0.2011
S_abs4n30_4_L6 10250.97 195 0.2251
S_abs4n30_5_L3 4741.89 53 0.7466
S_abs4n30_5_L6 11447.75 300 -0.0148
S_abs5n30_1_L3 2719.35 8 0.0000
S_abs5n30_1_L6 7054.72 83 0.1873
S_abs5n30_2_L3 3020.61 20 0.0000
S_abs5n30_2_L6 7816.22 160 0.0073
S_abs5n30_3_L3 3393.39 23 0.0000
S_abs5n30_3_L6 8859.53 225 0.4285
S_abs5n30_4_L3 3796.45 30 0.0000
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Instance UB Time(s) Primal Gap
S_abs5n30_4_L6 9972.4 475 -0.0392
S_abs5n30_5_L3 4156.91 43 0.0002
S_abs5n30_5_L6 11159.98 794 -0.3167
S_abs1n30_1_H3 9669.76 9 0.0000
S_abs1n30_1_H6 20584.48 51 0.4372
S_abs1n30_2_H3 10052.78 22 0.0000
S_abs1n30_2_H6 21525.76 191 0.0604
S_abs1n30_3_H3 10511.8 26 0.0000
S_abs1n30_3_H6 22819.57 275 0.0330
S_abs1n30_4_H3 10996.1 32 0.0000
S_abs1n30_4_H6 24318.66 709 0.0977
S_abs1n30_5_H3 11593.4 55 0.0000
S_abs1n30_5_H6 25879.26 656 0.0749
S_abs2n30_1_H3 8839.33 18 0.0000
S_abs2n30_1_H6 17928.03 54 0.0639
S_abs2n30_2_H3 9156.11 26 0.0000
S_abs2n30_2_H6 18751.08 112 0.1890
S_abs2n30_3_H3 9584.47 34 0.0027
S_abs2n30_3_H6 19745.43 172 0.0176
S_abs2n30_4_H3 9931.93 38 0.0608
S_abs2n30_4_H6 20862.56 191 0.1508
S_abs2n30_5_H3 10373.61 56 0.1040
S_abs2n30_5_H6 22083.74 357 0.1070
S_abs3n30_1_H3 9671.61 8 0.0000
S_abs3n30_1_H6 20774.64 40 0.5061
S_abs3n30_2_H3 9826.31 19 0.0000
S_abs3n30_2_H6 21079.37 103 0.4262
S_abs3n30_3_H3 10037.21 24 0.0001
S_abs3n30_3_H6 21927.57 167 0.2847
S_abs3n30_4_H3 10372.87 29 0.0021
S_abs3n30_4_H6 22821.37 237 0.1340
S_abs3n30_5_H3 10678.31 26 0.0015
S_abs3n30_5_H6 23829.92 288 0.1426
S_abs4n30_1_H3 7947.52 22 0.0143
S_abs4n30_1_H6 15952.99 52 0.1336
S_abs4n30_2_H3 8223.26 34 0.0000
S_abs4n30_2_H6 16710.5 134 0.0803
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Instance UB Time(s) Primal Gap
S_abs4n30_3_H3 8546.37 45 0.0000
S_abs4n30_3_H6 17716.48 222 0.2759
S_abs4n30_4_H3 9035.54 62 0.0000
S_abs4n30_4_H6 18890.6 233 0.1934
S_abs4n30_5_H3 9542.94 45 0.5273
S_abs4n30_5_H6 20088.36 367 -0.0109
S_abs5n30_1_H3 7826.27 8 0.0000
S_abs5n30_1_H6 16904.58 59 0.2346
S_abs5n30_2_H3 8115.83 21 0.0000
S_abs5n30_2_H6 17680.26 198 0.0050
S_abs5n30_3_H3 8502.79 25 0.0014
S_abs5n30_3_H6 18718.67 295 0.2531
S_abs5n30_4_H3 8910.03 32 0.0000
S_abs5n30_4_H6 19816.54 443 0.0239
S_abs5n30_5_H3 9272.27 46 0.0000
S_abs5n30_5_H6 21020.5 896 -0.0482
S_abs1n35_1_L3 3122.83 10 0.0000
S_abs1n35_2_L3 3374.61 31 0.0000
S_abs1n35_3_L3 3857.31 31 0.0000
S_abs1n35_4_L3 4145.67 34 0.0000
S_abs1n35_5_L3 4541.69 47 0.0000
S_abs2n35_1_L3 3349.09 21 0.0000
S_abs2n35_2_L3 3664.9 25 0.0797
S_abs2n35_3_L3 4031.38 36 0.0563
S_abs2n35_4_L3 4446.31 60 0.3324
S_abs2n35_5_L3 4816.58 48 0.0546
S_abs3n35_1_L3 3532.48 10 0.0000
S_abs3n35_2_L3 3904.76 23 0.0000
S_abs3n35_3_L3 4446.56 29 0.0000
S_abs3n35_4_L3 5002.64 36 0.0000
S_abs3n35_5_L3 5638.84 36 0.0000
S_abs4n35_1_L3 3032.23 11 0.0000
S_abs4n35_2_L3 3244.21 27 0.0000
S_abs4n35_3_L3 3814.17 35 0.0063
S_abs4n35_4_L3 4305.25 38 0.0005
S_abs4n35_5_L3 4667.55 46 0.0000
S_abs5n35_1_L3 3104.54 11 0.0000
Table C.1: Detailed results for all IRP instances (cont...)
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Instance UB Time(s) Primal Gap
S_abs5n35_2_L3 3382.92 24 0.0000
S_abs5n35_3_L3 3823.98 36 0.0000
S_abs5n35_4_L3 4224.46 40 0.0000
S_abs5n35_5_L3 4624.38 46 0.0000
S_abs1n35_1_H3 9385.82 11 0.0000
S_abs1n35_2_H3 9648.24 28 0.0000
S_abs1n35_3_H3 10121.9 30 0.0000
S_abs1n35_4_H3 10424.24 33 0.0000
S_abs1n35_5_H3 10831.94 49 0.0004
S_abs2n35_1_H3 8546.09 24 0.0000
S_abs2n35_2_H3 8864.09 26 0.2171
S_abs2n35_3_H3 9218.81 44 0.1548
S_abs2n35_4_H3 9628.19 60 0.1925
S_abs2n35_5_H3 10018.38 68 0.1656
S_abs3n35_1_H3 10963.77 11 0.0000
S_abs3n35_2_H3 11334.79 23 0.0000
S_abs3n35_3_H3 11881.77 28 0.0000
S_abs3n35_4_H3 12462.95 36 0.0003
S_abs3n35_5_H3 13075.99 41 0.0000
S_abs4n35_1_H3 8357.92 10 0.0000
S_abs4n35_2_H3 8572.64 25 0.0002
S_abs4n35_3_H3 9143.44 37 0.0004
S_abs4n35_4_H3 9632.54 42 0.0023
S_abs4n35_5_H3 10002.08 49 0.0000
S_abs5n35_1_H3 8733.79 11 0.0002
S_abs5n35_2_H3 9013.01 25 0.0004
S_abs5n35_3_H3 9454.31 35 0.0004
S_abs5n35_4_H3 9856.11 42 0.0004
S_abs5n35_5_H3 10256.37 47 0.0000
S_abs1n40_1_L3 3435.06 13 0.0000
S_abs1n40_2_L3 3725.38 28 0.0000
S_abs1n40_3_L3 4265.76 40 0.0000
S_abs1n40_4_L3 4766.5 48 0.0000
S_abs1n40_5_L3 5287.04 73 0.0000
S_abs2n40_1_L3 3619.71 32 0.0000
S_abs2n40_2_L3 3967.69 59 0.0000
S_abs2n40_3_L3 4331.99 47 0.0000
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Instance UB Time(s) Primal Gap
S_abs2n40_4_L3 4851.57 51 0.0000
S_abs2n40_5_L3 5188.33 83 0.8867
S_abs3n40_1_L3 3598.72 13 0.0000
S_abs3n40_2_L3 3829.68 26 0.0000
S_abs3n40_3_L3 4034.34 33 0.0000
S_abs3n40_4_L3 4366.4 40 0.0000
S_abs3n40_5_L3 4641.06 47 0.0000
S_abs4n40_1_L3 3318.31 14 0.0000
S_abs4n40_2_L3 3520.29 27 0.0000
S_abs4n40_3_L3 3777.89 36 0.0000
S_abs4n40_4_L3 4256.29 50 0.0000
S_abs4n40_5_L3 4561.39 52 0.0000
S_abs5n40_1_L3 3310.77 21 0.0000
S_abs5n40_2_L3 3630.77 35 0.0000
S_abs5n40_3_L3 4074.85 41 0.0000
S_abs5n40_4_L3 4486.05 85 0.0000
S_abs5n40_5_L3 4781.31 59 0.0000
S_abs1n40_1_H3 10657.28 13 0.0002
S_abs1n40_2_H3 10952.76 30 0.0000
S_abs1n40_3_H3 11516.48 41 0.0002
S_abs1n40_4_H3 12014.08 48 0.0002
S_abs1n40_5_H3 12546.9 77 0.0003
S_abs2n40_1_H3 9202.74 35 0.0000
S_abs2n40_2_H3 9550.62 53 0.0003
S_abs2n40_3_H3 9900.51 46 0.0002
S_abs2n40_4_H3 10444.53 68 0.1321
S_abs2n40_5_H3 10770.99 96 0.5330
S_abs3n40_1_H3 10855.53 14 0.0004
S_abs3n40_2_H3 11086.69 29 0.0000
S_abs3n40_3_H3 11296.95 34 0.0023
S_abs3n40_4_H3 11629.51 44 0.0002
S_abs3n40_5_H3 11909.45 52 0.0000
S_abs4n40_1_H3 9208.3 26 0.0000
S_abs4n40_2_H3 9445.33 27 0.0002
S_abs4n40_3_H3 9703.89 37 0.0000
S_abs4n40_4_H3 10184.19 53 0.0000
S_abs4n40_5_H3 10491.43 56 0.0002
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Instance UB Time(s) Primal Gap
S_abs5n40_1_H3 10403.09 21 0.0000
S_abs5n40_2_H3 10723.27 33 0.0000
S_abs5n40_3_H3 11168.05 57 0.0004
S_abs5n40_4_H3 11566.06 51 0.0004
S_abs5n40_5_H3 11876.21 54 0.0000
S_abs1n45_1_L3 3667.63 16 0.0000
S_abs1n45_2_L3 3794.63 33 0.0000
S_abs1n45_3_L3 4254.07 48 0.0000
S_abs1n45_4_L3 4706.25 69 0.0000
S_abs1n45_5_L3 5186.87 75 0.0010
S_abs2n45_1_L3 3438.38 16 0.0000
S_abs2n45_2_L3 3919.34 38 0.0000
S_abs2n45_3_L3 4480.62 61 0.0000
S_abs2n45_4_L3 5057.04 61 0.0000
S_abs2n45_5_L3 5707.6 67 0.0000
S_abs3n45_1_L3 3661.2 17 0.0000
S_abs3n45_2_L3 3814.88 36 0.0000
S_abs3n45_3_L3 3960.58 37 0.0000
S_abs3n45_4_L3 4207.66 51 0.0000
S_abs3n45_5_L3 4500.78 66 0.0000
S_abs4n45_1_L3 3730.42 25 0.0000
S_abs4n45_2_L3 4189.42 42 0.0000
S_abs4n45_3_L3 4653.32 51 0.0000
S_abs4n45_4_L3 5206.32 57 0.0000
S_abs4n45_5_L3 5801.84 97 0.0000
S_abs5n45_1_L3 3444.23 28 0.0168
S_abs5n45_2_L3 3638.23 40 0.0038
S_abs5n45_3_L3 3866.85 62 0.0000
S_abs5n45_4_L3 4149.73 93 0.0082
S_abs5n45_5_L3 4340.75 88 0.0041
S_abs1n45_1_H3 11319.47 16 0.0000
S_abs1n45_2_H3 11447.71 32 0.0003
S_abs1n45_3_H3 11911.35 46 0.0000
S_abs1n45_4_H3 12362.25 68 0.0000
S_abs1n45_5_H3 12844.95 70 0.0037
S_abs2n45_1_H3 10513.61 17 0.0002
S_abs2n45_2_H3 11012.27 34 0.0000
Table C.1: Detailed results for all IRP instances (cont...)
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Instance UB Time(s) Primal Gap
S_abs2n45_3_H3 11582.39 63 0.0000
S_abs2n45_4_H3 12152.01 58 0.0002
S_abs2n45_5_H3 12805.13 69 0.0003
S_abs3n45_1_H3 11762.18 17 0.0000
S_abs3n45_2_H3 11926.76 35 0.0000
S_abs3n45_3_H3 12088.54 37 0.0003
S_abs3n45_4_H3 12370.24 50 0.0003
S_abs3n45_5_H3 12648.14 53 0.0000
S_abs4n45_1_H3 10936.09 25 0.0000
S_abs4n45_2_H3 11395.09 35 0.0000
S_abs4n45_3_H3 11838.33 45 0.0020
S_abs4n45_4_H3 12391.57 60 0.0000
S_abs4n45_5_H3 12985.45 113 0.0000
S_abs5n45_1_H3 10829.11 32 0.0000
S_abs5n45_2_H3 11034.21 58 0.0000
S_abs5n45_3_H3 11254.05 71 0.0000
S_abs5n45_4_H3 11538.27 81 0.0055
S_abs5n45_5_H3 11728.25 106 0.0000
S_abs1n50_1_L3 3752.25 39 0.0000
S_abs1n50_2_L3 4272.23 86 0.0000
S_abs1n50_3_L3 4907.25 84 0.0000
S_abs1n50_4_L3 5558.51 90 0.0000
S_abs1n50_5_L3 6190.25 137 0.0000
S_abs2n50_1_L3 4220.32 41 0.0000
S_abs2n50_2_L3 4550.28 84 0.0000
S_abs2n50_3_L3 5237.83 104 0.0000
S_abs2n50_4_L3 5873.24 163 0.0317
S_abs2n50_5_L3 6417.69 172 0.0000
S_abs3n50_1_L3 4147.66 47 0.0000
S_abs3n50_2_L3 4401.96 51 0.0000
S_abs3n50_3_L3 4809.53 76 0.0081
S_abs3n50_4_L3 5200 91 0.0000
S_abs3n50_5_L3 5709.54 108 0.0231
S_abs4n50_1_L3 4062.84 19 0.0000
S_abs4n50_2_L3 4319.84 45 0.0000
S_abs4n50_3_L3 4943.44 57 0.0000
S_abs4n50_4_L3 5610.62 91 0.0000
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Instance UB Time(s) Primal Gap
S_abs4n50_5_L3 6311.76 132 0.0000
S_abs5n50_1_L3 3897.11 41 0.0000
S_abs5n50_2_L3 4246.17 46 0.0000
S_abs5n50_3_L3 4767 74 0.0000
S_abs5n50_4_L3 5411.59 99 0.0000
S_abs5n50_5_L3 5912.51 105 0.0003
S_abs1n50_1_H3 11607.98 39 0.0000
S_abs1n50_2_H3 12127.78 57 0.0000
S_abs1n50_3_H3 12763.28 84 0.0000
S_abs1n50_4_H3 13397.98 105 0.0000
S_abs1n50_5_H3 14048.2 134 0.0000
S_abs2n50_1_H3 12092.36 43 0.0000
S_abs2n50_2_H3 12433.66 70 0.0003
S_abs2n50_3_H3 13118.66 86 0.0026
S_abs2n50_4_H3 13731.62 144 0.0000
S_abs2n50_5_H3 14298.34 149 0.0001
S_abs3n50_1_H3 12240.8 46 0.0000
S_abs3n50_2_H3 12482.26 66 0.0004
S_abs3n50_3_H3 12902.06 84 0.0004
S_abs3n50_4_H3 13280.3 82 0.0000
S_abs3n50_5_H3 13796.8 115 0.0000
S_abs4n50_1_H3 13126.73 19 0.0000
S_abs4n50_2_H3 13384.85 48 0.0001
S_abs4n50_3_H3 14011.35 63 0.0016
S_abs4n50_4_H3 14678.79 89 0.0000
S_abs4n50_5_H3 15414.22 143 0.1780
S_abs5n50_1_H3 12469.12 46 0.0000
S_abs5n50_2_H3 12818.18 48 0.0002
S_abs5n50_3_H3 13327.57 80 0.0002
S_abs5n50_4_H3 13984.44 113 0.0000
S_abs5n50_5_H3 14486.24 128 0.0013
L_abs10n50_1_L 9377.16 195 0.7366
L_abs10n50_2_L 10507.27 597 0.4339
L_abs10n50_3_L 12007.56 565 -0.0366
L_abs10n50_4_L 13777.09 1158 -0.3155
L_abs10n50_5_L 15514.27 1265 -0.0420
L_abs1n50_1_L 9750.95 205 1.1143
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Instance UB Time(s) Primal Gap
L_abs1n50_2_L 10968.26 504 0.1456
L_abs1n50_3_L 12617.44 593 -0.1195
L_abs1n50_4_L 14555.65 1023 0.0901
L_abs1n50_5_L 16577.49 1467 -0.1717
L_abs2n50_1_L 10355.52 146 0.2980
L_abs2n50_2_L 11383.14 702 0.0374
L_abs2n50_3_L 13166.51 612 -0.3033
L_abs2n50_4_L 14976.14 1047 0.0490
L_abs2n50_5_L 17052.2 1479 0.1224
L_abs3n50_1_L 10209.14 115 0.1130
L_abs3n50_2_L 10738.69 379 0.1445
L_abs3n50_3_L 11860.65 642 0.5632
L_abs3n50_4_L 13131.83 1195 0.3316
L_abs3n50_5_L 14510.78 1305 0.1201
L_abs4n50_1_L 10176.86 118 0.0604
L_abs4n50_2_L 10844.36 338 0.4098
L_abs4n50_3_L 12677.97 822 0.1701
L_abs4n50_4_L 14684.79 1269 -0.1938
L_abs4n50_5_L 16627.7 1454 0.0741
L_abs5n50_1_L 9819.63 176 0.1595
L_abs5n50_2_L 10524.79 421 0.0075
L_abs5n50_3_L 12092.04 929 -0.0688
L_abs5n50_4_L 13764.79 1107 0.0353
L_abs5n50_5_L 15428.55 1388 0.1394
L_abs6n50_1_L 9820.33 172 0.1873
L_abs6n50_2_L 11052.86 554 0.5244
L_abs6n50_3_L 12932.13 669 0.4549
L_abs6n50_4_L 14721.44 1304 -0.1161
L_abs6n50_5_L 16650.6 1395 0.1880
L_abs7n50_1_L 9834.04 156 1.6827
L_abs7n50_2_L 11120.19 475 0.1142
L_abs7n50_3_L 12953.76 606 -0.0465
L_abs7n50_4_L 14858.09 1150 0.3906
L_abs7n50_5_L 16853.69 1421 -0.2104
L_abs8n50_1_L 10126.47 135 0.7647
L_abs8n50_2_L 11710.84 910 0.0423
L_abs8n50_3_L 13960.57 964 -0.1274
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Instance UB Time(s) Primal Gap
L_abs8n50_4_L 16290.7 1332 -0.1057
L_abs8n50_5_L 18625.53 1489 -0.1250
L_abs9n50_1_L 9698.21 187 0.0549
L_abs9n50_2_L 10806.51 438 0.5069
L_abs9n50_3_L 12240.92 572 -0.0879
L_abs9n50_4_L 13752.97 1009 -0.2012
L_abs9n50_5_L 15426.67 1455 0.2533

L_abs10n50_1_H 28055.22 103 0.7563
L_abs10n50_2_H 29029.74 555 0.0591
L_abs10n50_3_H 30547.72 659 0.0902
L_abs10n50_4_H 32316.17 1005 0.0696
L_abs10n50_5_H 34046.25 1159 -0.0771
L_abs1n50_1_H 27114.62 108 0.6668
L_abs1n50_2_H 28184.75 366 0.0286
L_abs1n50_3_H 29909.22 602 0.1532
L_abs1n50_4_H 31800.75 1416 0.0476
L_abs1n50_5_H 33809.32 1509 0.0474
L_abs2n50_1_H 26773.28 130 0.1249
L_abs2n50_2_H 27839.85 552 0.0910
L_abs2n50_3_H 29635.36 947 -0.1231
L_abs2n50_4_H 31425.86 1185 0.0251
L_abs2n50_5_H 33451.61 1509 -0.1444
L_abs3n50_1_H 26684.01 102 0.0871
L_abs3n50_2_H 27288.12 453 0.2257
L_abs3n50_3_H 28372.95 700 0.1560
L_abs3n50_4_H 29656.01 1076 0.0126
L_abs3n50_5_H 31054.14 1480 0.0904
L_abs4n50_1_H 28162.64 201 0.1099
L_abs4n50_2_H 28919.15 289 0.1685
L_abs4n50_3_H 30722.52 1065 0.1336
L_abs4n50_4_H 32774.36 1422 0.1427
L_abs4n50_5_H 34705.04 1493 0.3013
L_abs5n50_1_H 26156.37 129 0.0140
L_abs5n50_2_H 26952.86 432 0.0212
L_abs5n50_3_H 28550.71 711 0.1166
L_abs5n50_4_H 30224.22 1204 0.0107
L_abs5n50_5_H 31837.87 1508 -0.2540
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Instance UB Time(s) Primal Gap
L_abs6n50_1_H 28625.32 126 0.7103
L_abs6n50_2_H 29736.64 715 0.3273
L_abs6n50_3_H 31707.11 1010 0.5120
L_abs6n50_4_H 33502.18 1221 0.1827
L_abs6n50_5_H 35368.88 1483 0.1462
L_abs7n50_1_H 26782.48 117 0.6676
L_abs7n50_2_H 28041.01 452 0.0207
L_abs7n50_3_H 29902.7 634 -0.1378
L_abs7n50_4_H 31856.15 1454 0.1289
L_abs7n50_5_H 33824.93 1509 0.1097
L_abs8n50_1_H 23458.38 151 0.1350
L_abs8n50_2_H 25155.51 767 0.1222
L_abs8n50_3_H 27406.82 1158 0.0056
L_abs8n50_4_H 29723.63 1451 -0.0418
L_abs8n50_5_H 32055.55 1509 -0.1702
L_abs9n50_1_H 27042.54 236 0.0739
L_abs9n50_2_H 28054.5 373 0.1525
L_abs9n50_3_H 29530.51 659 -0.0998
L_abs9n50_4_H 31080.02 900 0.2116
L_abs9n50_5_H 32703.7 1385 0.1242

L_abs10n100_1_L 14846.24 539 0.2933
L_abs10n100_2_L 15038.89 1201 0.6112
L_abs10n100_3_L 15736.18 1439 -0.4416
L_abs10n100_4_L 16577.94 1509 0.1590
L_abs10n100_5_L 17624.9 1509 -0.2128
L_abs1n100_1_L 15116.13 795 0.9353
L_abs1n100_2_L 15453.69 1212 0.8402
L_abs1n100_3_L 16274.97 1509 -0.6000
L_abs1n100_4_L 17252.21 1509 -0.3284
L_abs1n100_5_L 18482.25 1509 -0.5198
L_abs2n100_1_L 14069.02 616 0.9612
L_abs2n100_2_L 14412.57 1472 0.6895
L_abs2n100_3_L 15120.33 1446 0.0197
L_abs2n100_4_L 16084.8 1497 -0.4403
L_abs2n100_5_L 17089.3 1509 -0.0608
L_abs3n100_1_L 14954.45 610 0.7219
L_abs3n100_2_L 15394.12 1214 0.4697
Table C.1: Detailed results for all IRP instances (cont...)
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Instance UB Time(s) Primal Gap
L_abs3n100_3_L 16506.35 1454 -0.6417
L_abs3n100_4_L 18075.71 1509 -0.7411
L_abs3n100_5_L 19689.31 1509 -0.7186
L_abs4n100_1_L 14163.24 742 0.8456
L_abs4n100_2_L 14421.96 1350 0.7969
L_abs4n100_3_L 14985.16 1392 0.4777
L_abs4n100_4_L 15710.16 1494 -0.3889
L_abs4n100_5_L 16653.93 1504 -0.3901
L_abs5n100_1_L 14637.52 611 0.6943
L_abs5n100_2_L 15014.21 1356 0.1238
L_abs5n100_3_L 15677.77 1493 0.2796
L_abs5n100_4_L 16565.77 1509 -0.6336
L_abs5n100_5_L 17562.72 1509 -0.6658
L_abs6n100_1_L 14711.54 449 0.8684
L_abs6n100_2_L 15192.42 1322 -0.0374
L_abs6n100_3_L 16619.74 1509 -0.4792
L_abs6n100_4_L 18184 1509 -0.3097
L_abs6n100_5_L 19954.69 1509 -0.1640
L_abs7n100_1_L 14808.08 475 0.9084
L_abs7n100_2_L 15099.67 953 0.5119
L_abs7n100_3_L 15943.06 1466 -0.4627
L_abs7n100_4_L 17084.74 1509 0.2951
L_abs7n100_5_L 18368.9 1509 -0.0009
L_abs8n100_1_L 14441.7 522 0.4572
L_abs8n100_2_L 15239.27 1493 -0.1817
L_abs8n100_3_L 16573.62 1509 -0.4062
L_abs8n100_4_L 18281.52 1509 0.4260
L_abs8n100_5_L 20032.38 1509 0.2929
L_abs9n100_1_L 14968.9 636 0.6979
L_abs9n100_2_L 15516.69 989 0.5102
L_abs9n100_3_L 17096.16 1509 -0.2532
L_abs9n100_4_L 18852.32 1509 0.2888
L_abs9n100_5_L 20762.76 1509 -0.7261

L_abs10n100_1_H 49935.7 893 0.4249
L_abs10n100_2_H 50176.1 1502 0.3526
L_abs10n100_3_H 50904.67 1509 -0.0159
L_abs10n100_4_H 51743.09 1509 -0.0993

Table C.1: Detailed results for all IRP instances (cont...)
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Instance UB Time(s) Primal Gap
L_abs10n100_5_H 52780.31 1509 -0.3441
L_abs1n100_1_H 50867.13 871 0.3594
L_abs1n100_2_H 51316.57 1500 0.2353
L_abs1n100_3_H 52161.89 1509 -0.0888
L_abs1n100_4_H 53201.1 1509 0.0934
L_abs1n100_5_H 54442.18 1509 0.0010
L_abs2n100_1_H 47342.32 564 0.4889
L_abs2n100_2_H 47700.71 1459 0.1987
L_abs2n100_3_H 48408.54 1509 -0.0025
L_abs2n100_4_H 49359.9 1509 -0.0094
L_abs2n100_5_H 50433.59 1509 -0.0205
L_abs3n100_1_H 51649.11 768 0.3414
L_abs3n100_2_H 52097.5 1504 0.2015
L_abs3n100_3_H 53255.98 1509 -0.1542
L_abs3n100_4_H 54866.1 1509 0.0324
L_abs3n100_5_H 56556.23 1509 -0.0899
L_abs4n100_1_H 45951.6 748 0.6924
L_abs4n100_2_H 46127.06 1424 0.1769
L_abs4n100_3_H 46759.13 1447 0.3108
L_abs4n100_4_H 47476.71 1502 -0.0794
L_abs4n100_5_H 48383.58 1509 -0.0286
L_abs5n100_1_H 51323.91 747 0.4702
L_abs5n100_2_H 51606.25 1509 0.0560
L_abs5n100_3_H 52337.1 1493 -0.0225
L_abs5n100_4_H 53232.69 1509 -0.0170
L_abs5n100_5_H 54290.72 1509 0.0125
L_abs6n100_1_H 48861.45 754 0.5100
L_abs6n100_2_H 49527.21 1509 0.1567
L_abs6n100_3_H 50921.73 1509 -0.0380
L_abs6n100_4_H 52494.66 1509 -0.1905
L_abs6n100_5_H 54299.43 1509 -0.0358
L_abs7n100_1_H 49634.86 633 0.2045
L_abs7n100_2_H 49955.36 1414 -0.0420
L_abs7n100_3_H 50909.65 1504 0.2886
L_abs7n100_4_H 52135.39 1509 0.3021
L_abs7n100_5_H 53415.96 1509 0.0864
L_abs8n100_1_H 48796.59 742 0.3802
Table C.1: Detailed results for all IRP instances (cont...)
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Instance UB Time(s) Primal Gap
L_abs8n100_2_H 49595.03 1509 0.1010
L_abs8n100_3_H 50962.8 1509 0.0266
L_abs8n100_4_H 52713.51 1509 0.0515
L_abs8n100_5_H 54630.83 1509 0.3278
L_abs9n100_1_H 51657.72 685 0.0809
L_abs9n100_2_H 52377.78 1503 0.2282
L_abs9n100_3_H 54037.05 1509 0.0601
L_abs9n100_4_H 55817.33 1509 -0.0335
L_abs9n100_5_H 57678.44 1509 -0.0535
L_abs10n200_1_L 22215.3 1509 0.9297
L_abs10n200_2_L 22558.06 1509 0.6332
L_abs10n200_3_L 23325.55 1509 0.5368
L_abs10n200_4_L 24710.69 1509 0.4324
L_abs10n200_5_L 26534.67 1509 0.5074
L_abs1n200_1_L 22971.4 1509 0.6306
L_abs1n200_2_L 23266.47 1509 1.2826
L_abs1n200_3_L 23763.23 1509 0.7184
L_abs1n200_4_L 24412.55 1509 1.0251
L_abs1n200_5_L 25325.97 1509 0.9782
L_abs2n200_1_L 23182.44 1509 1.3721
L_abs2n200_2_L 23425.82 1509 0.5269
L_abs2n200_3_L 23935.46 1509 0.0896
L_abs2n200_4_L 24712.5 1509 0.2213
L_abs2n200_5_L 25849.42 1509 0.9659
L_abs3n200_1_L 22636.35 1509 0.7237
L_abs3n200_2_L 23119.04 1509 1.1059
L_abs3n200_3_L 23861.17 1509 0.2323
L_abs3n200_4_L 25497.51 1509 1.1723
L_abs3n200_5_L 27228.86 1509 2.0463
L_abs4n200_1_L 22953.52 1509 0.3833
L_abs4n200_2_L 23221 1509 0.5606
L_abs4n200_3_L 23690.24 1509 0.2840
L_abs4n200_4_L 24355.39 1509 0.6128
L_abs4n200_5_L 25129.67 1509 0.4024
L_abs5n200_1_L 22808.95 1509 0.1528
L_abs5n200_2_L 23128.71 1509 0.3578
L_abs5n200_3_L 23862.3 1509 0.1651
Table C.1: Detailed results for all IRP instances (cont...)
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Instance UB Time(s) Primal Gap
L_abs5n200_4_L 25398.33 1509 1.9610
L_abs5n200_5_L 26506.63 1509 1.1007
L_abs6n200_1_L 22325.33 1509 0.6392
L_abs6n200_2_L 22843.55 1509 0.6660
L_abs6n200_3_L 23698.16 1509 0.9553
L_abs6n200_4_L 24848.48 1509 1.1276
L_abs6n200_5_L 26232.53 1509 1.2573
L_abs7n200_1_L 22299.5 1509 -0.1932
L_abs7n200_2_L 22751.56 1509 1.6773
L_abs7n200_3_L 23391.97 1509 1.1604
L_abs7n200_4_L 24401.15 1509 1.0013
L_abs7n200_5_L 25611.29 1509 1.2534
L_abs8n200_1_L 22246.1 1509 1.9558
L_abs8n200_2_L 22343.26 1509 1.0489
L_abs8n200_3_L 22986.71 1509 0.8864
L_abs8n200_4_L 23735.48 1509 0.7160
L_abs8n200_5_L 24740.34 1509 1.2673
L_abs9n200_1_L 22581.87 1509 1.0998
L_abs9n200_2_L 23076.43 1509 0.8155
L_abs9n200_3_L 23764.74 1509 0.2873
L_abs9n200_4_L 25103.88 1509 0.3237
L_abs9n200_5_L 26512.15 1509 0.6262

L_abs10n200_1_H 95485.52 1509 0.6259
L_abs10n200_2_H 95985.23 1509 0.6834
L_abs10n200_3_H 96905.63 1509 0.5948
L_abs10n200_4_H 98576.92 1509 0.9930
L_abs10n200_5_H 100345.05 1509 1.1536
L_abs1n200_1_H 97325.79 1509 0.4991
L_abs1n200_2_H 97732.29 1509 0.8476
L_abs1n200_3_H 98055.15 1509 0.5892
L_abs1n200_4_H 98756.59 1509 0.5690
L_abs1n200_5_H 99828.93 1509 0.5825
L_abs2n200_1_H 98545.43 1509 0.5502
L_abs2n200_2_H 98926.72 1509 0.4581
L_abs2n200_3_H 99642.05 1509 0.4824
L_abs2n200_4_H 100356.17 1509 0.4339
L_abs2n200_5_H 101672.76 1509 0.8342
Table C.1: Detailed results for all IRP instances (cont...)



Appendix C. Detailed Computational Results 109

Instance UB Time(s) Primal Gap
L_abs3n200_1_H 94431.02 1509 0.6598
L_abs3n200_2_H 94958.4 1509 0.5745
L_abs3n200_3_H 96057.22 1509 0.7814
L_abs3n200_4_H 97650.87 1509 0.9286
L_abs3n200_5_H 99563.17 1509 1.3165
L_abs4n200_1_H 95495.51 1509 0.2718
L_abs4n200_2_H 95859.49 1509 0.4873
L_abs4n200_3_H 96243.81 1509 0.1928
L_abs4n200_4_H 97058.98 1509 0.4589
L_abs4n200_5_H 98048.75 1509 0.4191
L_abs5n200_1_H 95510.56 1509 0.2985
L_abs5n200_2_H 96074.91 1509 0.7642
L_abs5n200_3_H 96582.51 1509 0.3926
L_abs5n200_4_H 98025.19 1509 0.6220
L_abs5n200_5_H 99809.65 1509 1.1701
L_abs6n200_1_H 95687.93 1509 0.8300
L_abs6n200_2_H 96231.57 1509 0.7999
L_abs6n200_3_H 97120.95 1509 0.7793
L_abs6n200_4_H 98426.29 1509 0.9212
L_abs6n200_5_H 100103.39 1509 1.0707
L_abs7n200_1_H 85880.01 1509 0.1924
L_abs7n200_2_H 86321.53 1509 0.6229
L_abs7n200_3_H 86995.29 1509 0.5455
L_abs7n200_4_H 88196.43 1509 0.6649
L_abs7n200_5_H 89756 1509 1.0678
L_abs8n200_1_H 89734.82 1509 0.6504
L_abs8n200_2_H 90260.5 1509 0.9195
L_abs8n200_3_H 90669.73 1509 0.5396
L_abs8n200_4_H 91584.25 1509 0.7404
L_abs8n200_5_H 92627.21 1509 0.8175
L_abs9n200_1_H 91861.39 1509 0.5428
L_abs9n200_2_H 92604.73 1509 0.7207
L_abs9n200_3_H 93108.56 1509 0.3887
L_abs9n200_4_H 94655.08 1509 0.7150
L_abs9n200_5_H 96201.49 1509 0.5281

Table C.1: Detailed results for all IRP instances
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